OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20998–21006

Ultra-high quality-factor resonators with perfect azimuthal Modal-Symmetry

Nikolaj Moll, Thilo Stöferle, Sophie Schönenberger, and Rainer F. Mahrt  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20998-21006 (2009)
http://dx.doi.org/10.1364/OE.17.020998


View Full Text Article

Enhanced HTML    Acrobat PDF (1847 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study circular grating resonators (CGRs) which are formed by a central defect surrounded by concentric rings composing a grating and which display perfect azimuthal modal-symmetry. Because of their radial symmetry they exhibit a complete band gap for a minimal index contrast. However, as is the case for all 2D resonators their quality factors are limited by vertical losses. To reduce the vertical losses we introduce a chirp of the grating period by reducing it towards the central defect. The chirped CGRs exhibit drastically improved quality factors of up to tens of millions with a modal volume of a few cubic wavelengths.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: September 2, 2009
Revised Manuscript: October 28, 2009
Manuscript Accepted: October 28, 2009
Published: November 3, 2009

Citation
Nikolaj Moll, Thilo Stöferle, Sophie Schönenberger, and Rainer F. Mahrt, "Ultra-high quality-factor resonators with perfect azimuthal modal-symmetry," Opt. Express 17, 20998-21006 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20998


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Niehusmann, A. Vorckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh quality-factor silicon-on-insulator microringresonator," Opt. Lett. 29(24), 2861-2863 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-24-2861. [CrossRef]
  2. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1(1), 65-71 (2007), http://dx.doi.org/10.1038/nphoton.2006.42. [CrossRef]
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435(7040), 325-327 (2005), http://dx.doi.org/10.1038/nature03569. [CrossRef]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431(7012), 1081-1084 (2004), http://dx.doi.org/10.1038/nature02921. [CrossRef]
  5. K. Baumann, T. Stoferle, N. Moll, R. F. Mahrt, T. Wahlbrink, J. Bolten, T. Mollenhauer, C. Moormann, and U. Scherf, "Organic mixed-order photonic crystal lasers with ultrasmall footprint," Appl. Phys. Lett. 91(17), 171,108-3 (2007), http://link.aip.org/link/?APL/91/171108/1.
  6. C. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83(8), 1527-1529 (2003), http://link.aip.org/link/?APL/83/1527/1. [CrossRef]
  7. A. Nitkowski, L. Chen, and M. Lipson, "Cavity-enhanced on-chip absorption spectroscopy using microring resonators," Opt. Express 16(16), 930-936 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-16-11930.
  8. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432(7014), 200-203 (2004), http://dx.doi.org/10.1038/nature03119. [CrossRef]
  9. N. Moll, R. F. Mahrt, C. Bauer, H. Giessen, B. Schnabel, E. B. Kley, and U. Scherf, "Evidence for bandedge lasing in a two-dimensional photonic bandgap polymer laser," Appl. Phys. Lett. 80(5), 734-736 (2002), http://link.aip.org/link/?APL/80/734/1. [CrossRef]
  10. A. Jebali, R. F. Mahrt, N. Moll, D. Erni, C. Bauer, G. Bona, and W. Bachtold, "Lasing in organic circular grating structures," J. Appl. Phys. 96(6), 3043-3049 (2004), http://link.aip.org/link/?JAP/96/3043/1. [CrossRef]
  11. S. Schonenberger, N. Moll, T. Stoferle, R. F. Mahrt, B. J. Offrein, S. Gotzinger, V. Sandoghdar, J. Bolten, T. Wahlbrink, T. Plotzing, M. Waldow, and M. Forst, "Circular Grating Resonators as Small Mode-Volume Microcavities for Switching," Opt. Express 17(8), 5953-5964 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-8-5953. [CrossRef]
  12. D. Chang, J. Scheuer, and A. Yariv, "Optimization of circular photonic crystal cavities- beyond coupled mode theory," Opt. Express 13(23), 9272-9279 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-23-9272. [CrossRef]
  13. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultrasmall modal volume," Appl. Phys. Lett. 86(25), 251,101-3 (2005), http://link.aip.org/link/?APL/86/251101/1.
  14. X. Sun, J. Scheuer, and A. Yariv, "Optimal Design and Reduced Threshold in Vertically Emitting Circular Bragg Disk Resonator Lasers," IEEE J. Sel.Top. in Quantum Electron. 13(2), 359-366 (2007). [CrossRef]
  15. S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8(3), 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=oe-8-3-173. [CrossRef]
  16. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31(20), 2972-2974 (2006), http://ol.osa.org/abstract.cfm?URI=ol-31-20-2972. [CrossRef]
  17. Y. Tanaka, T. Asano, and S. Noda, "Design of Photonic Crystal Nanocavity With Q-Factor of ∼ 109," J. Lightwave Technol. 26(11), 1532-1539 (2008). [CrossRef]
  18. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q Nanocavity with 1D Photonic Gap," Opt. Express 16(15), 11,095-11,102 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-15-11095.
  19. Y. Takahashi, H. Hagino, Y. Tanaka, B. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15(25), 17,206-17,213 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-17206.
  20. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78(22), 3388-3390 (2001), http://link.aip.org/link/?APL/78/3388/1. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited