OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21015–21029

Single-shot holography for depth resolved three dimensional imaging

Nektarios Koukourakis, Christoph Kasseck, Daniel Rytz, Nils C. Gerhardt, and Martin R. Hofmann  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21015-21029 (2009)
http://dx.doi.org/10.1364/OE.17.021015


View Full Text Article

Enhanced HTML    Acrobat PDF (485 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a method for depth-resolved photorefractive holographic imaging with potentially extremely short acquisition time for a complete three dimensional (3D) image. By combining the advantages of full-field frequency-domain optical coherence tomography with those of photorefractive holography our concept is capable of obtaining 3D information with only one single shot. We describe the operation principle of our concept and give a first experimental proof of principle.

© 2009 OSA

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(090.4220) Holography : Multiplex holography
(090.7330) Holography : Volume gratings
(100.2650) Image processing : Fringe analysis
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(190.5330) Nonlinear optics : Photorefractive optics
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: July 17, 2009
Revised Manuscript: August 31, 2009
Manuscript Accepted: September 7, 2009
Published: November 3, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Nektarios Koukourakis, Christoph Kasseck, Daniel Rytz, Nils C. Gerhardt, and Martin R. Hofmann, "Single-shot holography for depth resolved 
three dimensional imaging," Opt. Express 17, 21015-21029 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21015


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” Appl. Phys. (Berl.) 36, 207–227 (2003).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  3. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995). [PubMed]
  4. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 11361 (2003). [CrossRef]
  5. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997). [CrossRef] [PubMed]
  6. M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999). [CrossRef]
  7. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  8. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography- principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  9. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  10. G. Häusler and M. W. Lindner, “Coherence Radar and Spectral Radar- New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998). [CrossRef]
  11. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  12. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005). [CrossRef] [PubMed]
  13. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  14. P. H. Tomlins and R. K. Wang, “Theory, development and applications of optical coherence tomography,” Appl. Phys. (Berl.) 38, 2519–2535 (2005).
  15. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. S. Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244 (1998). [CrossRef] [PubMed]
  16. B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131 (2005). [CrossRef] [PubMed]
  17. A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A 7, 350–356 (2005). [CrossRef]
  18. K. A. Stetson, “Holographic fog penetration,” J. Opt. Soc. Am. 57(8), 1060–1061 (1967). [CrossRef]
  19. K. G. Spears, J. Serafin, N. H. Abramson, X. M. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36(12), 1210–1221 (1989). [CrossRef] [PubMed]
  20. N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009). [CrossRef]
  21. U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994). [CrossRef] [PubMed]
  22. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002). [CrossRef]
  23. H. Chen, M. Shih, E. Arons, J. Lopez, D. Dilworth, and P. C. Sun, “Electronic holographic imaging through living human tissue,” Appl. Opt. 33(17), 3630 (1994). [CrossRef] [PubMed]
  24. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007). [CrossRef] [PubMed]
  25. M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol. 19(7), 074010 (2008). [CrossRef]
  26. P. Yu, M. Mustata, P. M. W. French, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83(3), 575–577 (2003). [CrossRef]
  27. P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004). [CrossRef] [PubMed]
  28. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20(11), 1331 (1995). [CrossRef] [PubMed]
  29. Z. Ansari, Y. Gu, J. Siegel, D. P. Karavassilis, C. W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, W. Headley, and M. R. Melloch, “High Frame-Rate, 3-D Photorefractive Holography Through Turbid Media With Arbitrary Sources, and Photorefractive Structured Illumination,” IEEE J. Sel. Top. Quantum Electron. 7(6), 878 (2001). [CrossRef]
  30. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782 (1995). [CrossRef] [PubMed]
  31. W. J. Carlsen, “Holographic Page Synthesis for Sequential Input of Data,” Appl. Opt. 13(4), 896 (1974). [CrossRef] [PubMed]
  32. C. Denz, K.-O. Müller, T. Heimann, and T. Tschudi, “Volume holographic Storage demonstrator based on Phase-coded multiplexing,” IEEE J. Sel. Top. Quantum Electron. 4(5), 832 (1998). [CrossRef]
  33. F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16(8), 605 (1991). [CrossRef] [PubMed]
  34. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17(20), 1471 (1992). [CrossRef] [PubMed]
  35. M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3(4), 138–140 (1978). [CrossRef] [PubMed]
  36. J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999). [CrossRef]
  37. M. Born, and E. Wolf, VII Theory of interference and interferometers,” in Principles of Optics, (Cambridge University Press, 7th edition, (1999).
  38. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415 (2002). [CrossRef] [PubMed]
  39. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ration in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147 (2005). [CrossRef] [PubMed]
  40. R. K. Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” Phys. Med. Biol. 52(19), 5897–5907 (2007). [CrossRef] [PubMed]
  41. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 9 (1969).
  42. F. Zhao, H. Zhou, S. Yin, and F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,” Opt. Commun. 103(1-2), 59–62 (1993). [CrossRef]
  43. S. Campbell, Y. Zhang, and P. Yeh, “Writing and copying in volume holographic memories: approaches and analysis,” Opt. Commun. 123(1-3), 27–33 (1996). [CrossRef]
  44. W. J. Burke and P. Sheng, “Crosstalk noise from multiple thick-phase holograms,” J. Appl. Phys. 48(2), 681 (1977). [CrossRef]
  45. K. Peithmann and A. W. K. Buse, ”Incremental recording in lithium niobate with active phase locking,” Opt. Lett. 23(24), 1927 (1998). [CrossRef] [PubMed]
  46. A. C. Strasser, E. S. Maniloff, K. M. Johnson, and S. D. D. Goggin, “Procedure for recording multiplex exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14(1), 6 (1989). [CrossRef] [PubMed]
  47. J. E. Ford, Y. Fainman, and S. H. Lee, “Enhanced photorefractive performance from 45°-cut BaTiO3,” Appl. Opt. 28(22), 4808 (1989). [CrossRef] [PubMed]
  48. M. Chi, S. Dou, H. Gao, H. Song, J. Zu, Y. Zhu, and P. Ye, “Enhanced Photorefractive Properties of a Rh-Doped BaTiO3 Crystal at Elevated Temperature,” Chin. Phys. Lett. 14(11), 838–841 (1997). [CrossRef]
  49. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188(1-4), 187–194 (2001). [CrossRef]
  50. I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Op. Soc. Am. B 25(2), 180 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited