OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21030–21041

Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials

Ruopeng Liu, Qiang Cheng, Jessie Y. Chin, Jack J. Mock, Tie Jun Cui, and David R. Smith  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21030-21041 (2009)
http://dx.doi.org/10.1364/OE.17.021030


View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Utilizing non-resonant metamaterial elements, we demonstrate that complex gradient index optics can be constructed exhibiting low material losses and large frequency bandwidth. Although the range of structures is limited to those having only electric response, with an electric permittivity always equal to or greater than unity, there are still numerous metamaterial design possibilities enabled by leveraging the non-resonant elements. For example, a gradient, impedance matching layer can be added that drastically reduces the return loss of the optical elements due to reflection. In microwave experiments, we demonstrate the broadband design concepts with a gradient index lens and a beam-steering element, both of which are confirmed to operate over the entire X-band (roughly 8-12 GHz) frequency spectrum.

© 2009 OSA

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(220.3630) Optical design and fabrication : Lenses
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: August 19, 2009
Revised Manuscript: October 20, 2009
Manuscript Accepted: October 21, 2009
Published: November 3, 2009

Citation
Ruopeng Liu, Qiang Cheng, Jessie Y. Chin, Jack J. Mock, Tie Jun Cui, and David R. Smith, "Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials," Opt. Express 17, 21030-21041 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21030


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2002). [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors and Enhanced Non-Linear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  3. W. E. Kock, “Metallic delay lenses,” Bell Syst. Tech. J. 27, 58 (1948).
  4. R. W. Corkum, “isotropic artificial dielectric,” Proceedings of the IRE 40(5), 574–587 (1952). [CrossRef]
  5. J. Brown, and W. Jackson, “The Properties of Artificial Dielectrics at Centimetre Wavelengths,” Proc. IEE paper no.1699R vol. 102B pp. 11–21, January 1995.
  6. I. Bahl and K. Gupta, “A leaky-wave antenna using an artificial dielectric medium,” IEEE Trans. Antenn. Propag. 22(1), 119–122 (1974). [CrossRef]
  7. Y. Mukoh, T. Nojima, and N. Hasebe, “A reflector lens antenna consisting of an artificial dielectric,” Electronics and Communications in Japan (1), 82 (1999).
  8. I. Awai, H. Kubo, T. Iribe, D. Wakamiya, and A. Sanada, “An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF,” in Microwave Symposium Digest, 2003 IEEE MTT-S International 2 1085–1088 (2003).
  9. I. Awai, S. Kida, and O. Mizue, “Very Thin and Flat Lens Antenna Made of Artificial Dielectrics,” in 2007 Korea-Japan Microwave Conference 177–180 (2007).
  10. I. Awai, “Artificial Dielectric Resonators for Miniaturized Filters,” IEEE Microw. Mag. 9(5), 55–64 (2008). [CrossRef]
  11. Y. Ma, B. Rejaei, and Y. Zhuang, “Radial Perfectly Matched Layer for the ADI-FDTD Method,” IEEE Microw. Wirel. Compon. Lett. 19, 431–433 (2008). [CrossRef]
  12. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  13. J. B. Pendry and S. A. Ramakrishna, “Focusing light with negative refractive index,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003). [CrossRef]
  14. S. Guenneau, B. Gralak, and J. B. Pendry, “Perfect corner reflector,” Opt. Lett. 30(10), 1204–1206 (2005). [CrossRef] [PubMed]
  15. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  16. R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(2), 026606 (2007). [CrossRef] [PubMed]
  17. C. Kittel, Solid State Physics (John Wiley & Sons, New York, 1986), 6th ed., p275.
  18. G. Dolling, C. Enkrich, M. Wegener, S. Linden, J. Zhou, and C. M. Soukoulis, “Cut-wire and plate capacitors as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198 (2005). [CrossRef] [PubMed]
  19. D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93(13), 137405 (2004). [CrossRef] [PubMed]
  20. M. J. Minot, “Single-layer, gradient refractive index antireflection films effective from 0.35 µm to 2.5 µm,” J. Opt. Soc. Am. 66(6), 515–519 (1976). [CrossRef]
  21. R. Jacobson, “Inhomogeneous and coevaporated homogeneous films for optical applications,” in Physics of Thin Films, G. Haas, M. Francombe, and R. Hoffman, eds. (Academic, New York, 1975), Vol. 8, p. 51.
  22. C. G. Snedaker, “New numerical thin-film synthesis technique,” J. Opt. Soc. Am. 72, 1732 (1982).
  23. B. J. Justice, J. J. Mock, L. Guo, A. Degiron, D. Schurig, and D. R. Smith, “Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials,” Opt. Express 14(19), 8694–8705 (2006). [CrossRef] [PubMed]
  24. J. Li and J. B. Pendry, “Hiding under the Carpet: a New Strategy for Cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef] [PubMed]
  25. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited