OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21050–21059

The longitudinal offset technique for apodization of coupled resonator optical waveguide devices: concept and fabrication tolerance analysis

José David Doménech, Pascual Muñoz, and José Capmany  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21050-21059 (2009)
http://dx.doi.org/10.1364/OE.17.021050


View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a novel technique to set the coupling constant between cells of a coupled resonator optical waveguide (CROW) device, in order to tailor the filter response, is presented. The technique is demonstrated by simulation assuming a racetrack ring resonator geometry. It consists on changing the effective length of the coupling section by applying a longitudinal offset between the resonators. On the contrary, the conventional techniques are based in the transversal change of the distance between the ring resonators, in steps that are commonly below the current fabrication resolution step (nm scale), leading to strong restrictions in the designs. The proposed longitudinal offset technique allows a more precise control of the coupling and presents an increased robustness against the fabrication limitations, since the needed resolution step is two orders of magnitude higher. Both techniques are compared in terms of the transmission response of CROW devices, under finite fabrication resolution steps.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: September 22, 2009
Revised Manuscript: October 23, 2009
Manuscript Accepted: October 24, 2009
Published: November 4, 2009

Citation
Jose D. Domenech, Pascual Muñoz, and Jose Capmany, "The longitudinal offset technique for apodization of coupled resonator optical waveguide devices: concept and fabrication tolerance analysis," Opt. Express 17, 21050-21059 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21050


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  2. J. E. Heebner, R. W. Boyd, and Q-Han. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides," J. Opt. Soc. Am. B 4, 722-731 (2002). [CrossRef]
  3. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in gaas micro-ring resonators," Opt. Lett. 25, 554-556 (2000). [CrossRef]
  4. M. A. Preciado and M. A. Muriel, "All-pass optical structures for repetition rate multiplication," Opt. Express 16, 11162-11168 (2008). [CrossRef] [PubMed]
  5. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photonics 1, 65-71 (2006). [CrossRef]
  6. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000). [CrossRef]
  7. J. Capmany, P. Munoz, J. D. Domenech, and M. A. Muriel, "Apodized coupled resonator waveguides," Opt. Express 15, 10196-10206 (2007). [CrossRef] [PubMed]
  8. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express 15, 11934-11941 (2007). [CrossRef] [PubMed]
  9. F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder Interferometers Composed of μ-Bends and μ-Branches in a Si Photonic Wire Waveguide," Jpn. J. Appl. Phys 44, 5322-5323 (2005). [CrossRef]
  10. K. Ebeling, Integrated Optoelectronics (Springer-Verlag, 1993). [CrossRef]
  11. F. Xia, L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Express 14,3872-3886 (2006). [CrossRef] [PubMed]
  12. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005). [CrossRef]
  13. "BeamPROP 8.1, RSoft Design Group, Inc." http://www.rsoftdesign.com.
  14. "ePIXfab, the European Silicon Photonics Platform." http://www.epixfab.eu/.
  15. J. Capmany, and M.A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing," J. Lightwave Technol. 8, 1904-1919 (1990). [CrossRef]
  16. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled resonator optical waveguides," Opt. Express 12, 90-103 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited