OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21159–21168

Quasi-uniform excitation source for cascade enhancement of SERS via focusing of surface plasmons

Haixi Zhang and Ho-Pui Ho  »View Author Affiliations

Optics Express, Vol. 17, Issue 23, pp. 21159-21168 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel surface-enhanced Raman scattering (SERS) excitation source based on focusing of surface plasmons around the center hole of a metal disk for cascaded enhancement is put forward and studied theoretically. The device offers intense SERS excitation with quasi-uniformity and horizontal polarization over a comparatively large hole through the combination of electromagnetic field focusing and hole plasmon resonance. As revealed by finite-difference time-domain (FDTD) method, the intensity spectra and the characteristics of the near field for the wavelength range of 650-1000nm exhibit a number of enhancement modes. Electric field intensity of the optimal mode enhances the SERS signal inside the hole by over four orders. An analytical model was also developed to gain precise interpretation on FDTD results. Our model also reveals the possibility of achieving eight orders of enhancement by optimizing the scale of the disk. In addition to generation of highly optimized hot spots, the large active hole also offers potential applications in fluorescence enhancement and nonlinear spectroscopy.

© 2009 OSA

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(240.6680) Optics at surfaces : Surface plasmons
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: August 31, 2009
Revised Manuscript: September 21, 2009
Manuscript Accepted: October 30, 2009
Published: November 5, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Haixi Zhang and Ho-Pui Ho, "Quasi-uniform excitation source for cascade enhancement of SERS via focusing of surface plasmons," Opt. Express 17, 21159-21168 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. (Springer-Verlag: Berlin, 1988).
  2. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982). [CrossRef]
  3. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004). [CrossRef] [PubMed]
  4. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008). [CrossRef]
  5. K. Sokolov, G. Chumanov, and T. M. Cotton, “Enhancement of molecular fluorescence near the surface of colloidal metal films,” Anal. Chem. 70(18), 3898–3905 (1998). [CrossRef] [PubMed]
  6. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]
  7. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005). [CrossRef]
  8. G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005). [CrossRef] [PubMed]
  9. X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008). [CrossRef] [PubMed]
  10. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003). [CrossRef]
  11. A. Otto, “What is observed in single molecule SERS, and why?” J. Raman. Spectrosc. 33(8), 593–598 (2002). [CrossRef]
  12. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003). [CrossRef] [PubMed]
  13. M. Futamata, “Single molecule sensitivity in SERS: importance of junction of adjacent Ag nanoparticles,” Faraday Discuss. 132, 45–61, discussion 85–94 (2006). [CrossRef] [PubMed]
  14. F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett. 6(12), 2639–2641 (2006). [CrossRef] [PubMed]
  15. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  16. H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, “Individual nanometer hole-particle pairs for surface-enhanced Raman scattering,” Small 4(9), 1296–1300 (2008). [CrossRef] [PubMed]
  17. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  18. T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008). [CrossRef] [PubMed]
  19. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004). [CrossRef]
  20. P. S. Tan, X.-C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 111108 (2008). [CrossRef]
  21. A.-L. Baudrion, F. de Léon-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martin-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16(5), 3420–3429 (2008). [CrossRef] [PubMed]
  22. A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Edition (Artech House, Mass., 2005).
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  24. H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006). [CrossRef] [PubMed]
  25. A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005). [CrossRef] [PubMed]
  26. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005). [CrossRef] [PubMed]
  27. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986). [CrossRef]
  28. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006). [CrossRef] [PubMed]
  29. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001). [CrossRef]
  30. C. Huygens, Treatise on Light, English translatin by S. P. Thompson, ed., (Macmillan, London, 1912).
  31. D. A. B. Miller, “Huygens’s wave propagation principle corrected,” Opt. Lett. 16(18), 1370–1372 (1991). [CrossRef] [PubMed]
  32. J. Seidel, S. Grafstrom, L. Eng, and L. Bischoff, “Surface plasmon transmission across narrow grooves in thin silver films,” Appl. Phys. Lett. 82(9), 1368–1370 (2003). [CrossRef]
  33. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. E. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004). [CrossRef]
  34. J. Alegret, P. Johansson, and M. Käll, “Green's tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films,” N. J. Phys. 10(10), 105004 (2008). [CrossRef]
  35. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003). [CrossRef]
  36. X. Xia, Y. Liu, V. Backman, and G. A. Ameer, “Engineering sub-100 nm multi-layer nanoshells,” Nanotechnology 17(21), 5435–5440 (2006). [CrossRef]
  37. T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10(2), 295–317 (1999). [CrossRef]
  38. A. Csáki, A. Steinbrück, S. Schröter, and W. Fritzsche, “Combination of Nanoholes with Metal Nanoparticles–Fabrication and Characterization of Novel Plasmonic Nanostructures,” Plasmonics 1(2-4), 147–155 (2006). [CrossRef]
  39. K. L. Shuford, S. K. Gray, M. A. Ratner, and G. C. Schatz, “Substrate Effect on Surface Plasmons in Single Nanoholes,” Chem. Phys. Lett. 435(1-3), 123–126 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited