OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21179–21190

Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials

Indika Udagedara, Malin Premaratne, Ivan D. Rukhlenko, Haroldo T. Hattori, and Govind P. Agrawal  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21179-21190 (2009)
http://dx.doi.org/10.1364/OE.17.021179


View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Finite-difference time-domain (FDTD) simulations of any electromagnetic problem require truncation of an often-unbounded physical region by an electromagnetically bounded region by deploying an artificial construct known as the perfectly matched layer (PML). As it is not possible to construct a universal PML that is non-reflective for different materials, PMLs that are tailored to a specific problem are required. For example, depending on the number of dispersive materials being truncated at the boundaries of a simulation region, an FDTD code may contain multiple sets of update equations for PML implementations. However, such an approach is prone to introducing coding errors. It also makes it extremely difficult to maintain and upgrade an existing FDTD code. In this paper, we solve this problem by developing a new, unified PML algorithm that can effectively truncate all types of linearly dispersive materials. The unification of the algorithm is achieved by employing a general form of the medium permittivity that includes three types of dielectric response functions, known as the Debye, Lorentz, and Drude response functions, as particular cases. We demonstrate the versatility and flexibility of the new formulation by implementing a single FDTD code to simulate absorption of electromagnetic pulse inside a medium that is adjacent to dispersive materials described by different dispersion models. The proposed algorithm can also be used for simulations of optical phenomena in metamaterials and materials exhibiting negative refractive indices.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.4670) Materials : Optical materials
(260.2030) Physical optics : Dispersion
(080.1753) Geometric optics : Computation methods
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Physical Optics

History
Original Manuscript: September 23, 2009
Revised Manuscript: October 23, 2009
Manuscript Accepted: November 4, 2009
Published: November 6, 2009

Citation
Indika Udagedara, Malin Premaratne, Ivan D. Rukhlenko, Haroldo T. Hattori, and Govind P. Agrawal, "Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials," Opt. Express 17, 21179-21190 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21179


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  2. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  3. P. Petropoulos, "Stability and phase error analysis of FD-TD in dispersive dielectrics," IEEE Trans. Antennas Propag. 42, 62-69 (1994). [CrossRef]
  4. M. Premaratne and S. K. Halgamuge, "Rigorous analysis of numerical phase and group velocity bounds in Yee’s FDTD grid," IEEE Microwave Wirel. Compon. Lett. 17, 556-558 (2007). [CrossRef]
  5. R. Luebbers, F. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat. 32, 222-227 (1990). [CrossRef]
  6. D. Kelley and R. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag. 44, 792-797 (1996). [CrossRef]
  7. J. Young, "Propagation in linear dispersive media: Finite difference time-domain methodologies," IEEE Trans. Antennas Propag. 43, 422-426 (1995). [CrossRef]
  8. D. Sullivan, "Z-transform theory and the FDTD method," IEEE Trans. Antennas Propag. 44, 28-34 (1996). [CrossRef]
  9. M. Okoniewski, M. Mrozowski, and M. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guided Wave Lett. 7, 121-123 (1997). [CrossRef]
  10. Y. Takayama and W. Klaus, "Reinterpretation of the auxiliary differential equation method for FDTD," IEEE Microwave Wirel. Compon. Lett. 12, 102-104 (2002). [CrossRef]
  11. M. Han, R. Dutton, and S. Fan, "Model dispersive media in finite-difference time-domain method with complexconjugate pole-residue pairs," IEEE Microwave Compon. Lett. 16, 119-121 (2006). [CrossRef]
  12. K. P. Prokopidis, "On the development of efficient FDTD-PML formulations for general dispersive media," Int. J. Numer. Model. 21, 395-411 (2008). [CrossRef]
  13. R. Luebbers, F. Hunsberger, and K. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag. 39, 29-34 (1991). [CrossRef]
  14. W. C. Chew and W. H. Weedon, "A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave Opt. Tech. Lett 7, 599-604 (1994). [CrossRef]
  15. S. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag. 44, 1630-1639 (1996). [CrossRef]
  16. M. Kuzuoglu and R. Mittra, "Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers," IEEE Microwave Guided Wave Lett. 6, 447-449 (1996). [CrossRef]
  17. S. Gedney, "Scaled CFS-PML: It is more robust, more accurate, more efficient, and simple to implement. Why aren’t you using it?" in Antennas and Propagation Society International Symposium 364-367 (2005).
  18. D. Correia and J.-M. Jin, "Performance of regular PML, CFS-PML, and second-order PML for waveguide problems," Microwave Opt. Technol. Lett. 48, 2121-2126 (2006). [CrossRef]
  19. J.-P. Berenger, "Numerical reflection from FDTD-PMLs: A comparison of the split PML with the unsplit and CFS PMLs," IEEE Trans. Antennas Propag. 50, 258-265 (2002). [CrossRef]
  20. D. Correia and J.-M. Jin, "On the development of a higher-order PML," IEEE Trans. Antennas Propag. 53, 4157-4163 (2005). [CrossRef]
  21. J.-P. Berenger, "Application of the CFS PML to the absorption of evanescent waves in waveguides," IEEE Microwave Wirel. Compon. Lett. 12, 218-220 (2002). [CrossRef]
  22. Y. Rickard and N. Georgieva, "Problem-independent enhancement of PML ABC for the FDTD method," IEEE Trans. Antennas Propag. 51, 3002-3006 (2003). [CrossRef]
  23. S. Cummer, "Perfectly matched layer behavior in negative refractive index materials," IEEE Antennas Wirel. Propag. Lett. 3, 172-175 (2004). [CrossRef]
  24. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, 1975).
  25. J.-P. Berenger, "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 127, 363-379 (1996). [CrossRef]
  26. O. P. Gandhi, B.-Q. Gao, and J.-Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Trans. Microwave Theory Tech. 41, 658-665 (1993). [CrossRef]
  27. W. D. Hurt, "Multiterm Debye dispersion relations for permittivity of muscle," IEEE Trans. Bio. Eng. 32, 60-64 (1985). [CrossRef]
  28. K. E. Oughstun, "Computational methods in ultrafast time-domain optics," Comput. Sci. Eng. 5, 22-32 (2003). [CrossRef]
  29. J. Xi and M. Premaratne, "Analysis of the optical force dependency on beam polarization: Dielectric/metallic spherical shell in a Gaussian beam," J. Opt. Soc. Am. B 26, 973-980 (2009). [CrossRef]
  30. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416(1-7) (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited