OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 21280–21288

Photon energy entanglement characterization by electronic transition interference

Alex Hayat, Pavel Ginzburg, and Meir Orenstein  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 21280-21288 (2009)
http://dx.doi.org/10.1364/OE.17.021280


View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose photon energy qubits and schemes for photon energy entanglement characterization. Bell inequality violation for energy qubits and complete Bell state analysis are demonstrated theoretically. Photon energy superposition state detection is performed by a two-photon absorption interferometer based on electron transition path interference. The scheme can be realized at room-temperature by two-level systems and semiconductor devices.

© 2009 OSA

OCIS Codes
(270.4180) Quantum optics : Multiphoton processes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: August 10, 2009
Revised Manuscript: October 18, 2009
Manuscript Accepted: November 1, 2009
Published: November 6, 2009

Citation
Alex Hayat, Pavel Ginzburg, and Meir Orenstein, "Photon energy entanglement characterization by electronic transition interference," Opt. Express 17, 21280-21288 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-21280


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47(10), 777–780 (1935). [CrossRef]
  2. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  3. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98(1), 010504 (2007). [CrossRef] [PubMed]
  4. L. Lanco, S. Ducci, J. P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97(17), 173901 (2006). [CrossRef] [PubMed]
  5. A. B. U’Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, “Generation of two-photon States with an arbitrary degree of entanglement via nonlinear crystal superlattices,” Phys. Rev. Lett. 97(22), 223602 (2006). [CrossRef] [PubMed]
  6. J. S. Bell, “On the Einstein-Podolsky-Rosen Paradox,” Physics 1, 195 (1964).
  7. J. D. Franson, “Bell’s theorem and delayed determinism,” Phys. Rev. D Part. Fields 31(10), 2529–2532 (1985). [CrossRef] [PubMed]
  8. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Vlation of Bell inequalities by photons more than 10 km apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998). [CrossRef]
  9. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989). [CrossRef] [PubMed]
  10. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999). [CrossRef]
  11. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47(4), R2472–R2475 (1993). [CrossRef] [PubMed]
  12. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007). [CrossRef]
  13. A. Cabello, A. Rossi, G. Vallone, F. De Martini, and P. Mataloni, “Proposed bell experiment with genuine energy-time entanglement,” Phys. Rev. Lett. 102(4), 040401 (2009). [CrossRef] [PubMed]
  14. S. Viciani, A. Zavatta, and M. Bellini, “Nonlocal modulations on the temporal and spectral profiles of an entangled photon pair,” Phys. Rev. A 69(5), 053801 (2004). [CrossRef]
  15. I. A. Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A 73(3), 031801 (2006). [CrossRef]
  16. A. K. Jha, M. Malik, and R. W. Boyd, “Exploring energy-time entanglement using geometric phase,” Phys. Rev. Lett. 101(18), 180405 (2008). [CrossRef] [PubMed]
  17. A. Hayat, P. Ginzburg, and M. Orenstein, “High-Rate Entanglement Source via Two-Photon Emission from Semiconductor Quantum Wells,” Phys. Rev. B 76(3), 035339 (2007). [CrossRef]
  18. A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of Two-Photon Emission from Semiconductors,” Nat. Photonics 2(4), 238–241 (2008). [CrossRef]
  19. J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990). [CrossRef] [PubMed]
  20. K. V. Bayandin and T. Martin, “Energy entanglement in normal metal–superconducting forks,” Phys. Rev. B 74(8), 085326 (2006). [CrossRef]
  21. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84(16), 2974 (2004). [CrossRef]
  22. A. Hayat, P. Ginzburg, and M. Orenstein, “Infrared single-photon detection by two-photon absorption in silicon,” Phys. Rev. B 77(12), 125219 (2008). [CrossRef]
  23. F. Boitier, J.-B. Dherbecourt, A. Godard, and E. Rosencher, “Infrared quantum counting by nondegenerate two photon conductivity in GaAs,” Appl. Phys. Lett. 94(8), 081112 (2009). [CrossRef]
  24. Y. Silberberg and D. Meshulach, “Coherent Quantum Control of Two-Photon Transitions by a Femtosecond Laser Pulse,” Nature 396(6708), 239–242 (1998). [CrossRef]
  25. D. Meshulach and Y. Silberberg, “Coherent Quantum Control of Multiphoton Transitions by Shaped Ultrashort Optical Pulses,” Phys. Rev. A 60(2), 1287–1292 (1999). [CrossRef]
  26. L. Costa, M. Betz, M. Spasenović, A. D. Bristow, and H. M. van Driel, “All-optical injection of ballistic electrical currents in unbiased silicon,” Nat. Phys. 3(9), 632–635 (2007). [CrossRef]
  27. R. B. A. Adamson, L. K. Shalm, M. W. Mitchell, and A. M. Steinberg, “Multiparticle state tomography: hidden differences,” Phys. Rev. Lett. 98(4), 043601 (2007). [CrossRef] [PubMed]
  28. C. C. Gerry, “Two-photon Jaynes-Cummings model interacting with the squeezed vacuum,” Phys. Rev. A 37(7), 2683–2686 (1988). [CrossRef] [PubMed]
  29. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008). [CrossRef] [PubMed]
  30. D. C. Hutchings and E. W. Van Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B 9(11), 2065 (1992). [CrossRef]
  31. W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007). [CrossRef] [PubMed]
  32. A. Hayat, Y. Elor, E. Small, and M. Orenstein, “Phasematching in Semiconductor Nonlinear Optics by Linear Long-Period Gratings,” Appl. Phys. Lett. 92(18), 181110 (2008). [CrossRef]
  33. S. L. Braunstein and A. Mann, “Measurement of the Bell operator and quantum teleportation,” Phys. Rev. A 51(3), R1727–R1730 (1995). [CrossRef] [PubMed]
  34. M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, “Interferometric Bell-state analysis,” Phys. Rev. A 53(3), R1209–R1212 (1996). [CrossRef] [PubMed]
  35. J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett. 96(13), 130502 (2006). [CrossRef] [PubMed]
  36. T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A 75(6), 060305 (2007). [CrossRef]
  37. E. DelRe, B. Crosignani, and P. Di Porto, “Scheme for total quantum teleportation,” Phys. Rev. Lett. 84(13), 2989–2992 (2000). [CrossRef] [PubMed]
  38. M. O. Scully, B.-G. Englert, and C. J. Bednar, “Two-Photon Scheme for Detecting the Bell Basis Using Atomic Coherence,” Phys. Rev. Lett. 83(21), 4433–4436 (1999). [CrossRef]
  39. F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5(4), 267–270 (2009). [CrossRef]
  40. B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008). [CrossRef]
  41. J. M. Fraser and H. M. van Driel, “Quantum interference control of free-carrier density in GaAs,” Phys. Rev. B 68(8), 085208 (2003). [CrossRef]
  42. A. Hayat, P. Ginzburg, D. Neiman, S. Rosenblum, and M. Orenstein, “Hyperentanglement source by intersubband two-photon emission from semiconductor quantum wells,” Opt. Lett. 33(11), 1168–1170 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited