OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21376–21395

Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination

Daifa Wang, Xin Liu, and Jing Bai  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21376-21395 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Challenges remain in imaging fast biological activities through whole body using fluorescence diffuse optical tomography (FDOT). We propose and analyze three full angle FDOT systems with different beam-forming illuminations (BF-FDOT), including line illumination (L-FDOT), area illumination (A-FDOT), and multiple-points illumination (MP-FDOT). Singular value analysis and experimental validation are used to optimize the experimental parameters in terms of hardware design, data collection and utilization. Comparisons are made on the system performance between L-FDOT and the conventional point illumination based full angle FDOT system (P-FDOT) with both numerical simulation and phantom experiment. We demonstrate that at least three cycles of projections are needed for P-FDOT to achieve comparable whole body image quality with L-FDOT. We also compare these three BF-FDOT systems and further discuss how these optimized parameters can be employed to improve spatial and temporal performances within current computational capacities, and guide the design of the BF-FDOT systems.

© 2009 OSA

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 2, 2009
Revised Manuscript: September 27, 2009
Manuscript Accepted: October 21, 2009
Published: November 9, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Daifa Wang, Xin Liu, and Jing Bai, "Analysis of fast full angle fluorescence diffuse optical tomography with beam-forming illumination," Opt. Express 17, 21376-21395 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hansch, O. Frey, D. Sauner, I. Hilger, M. Haas, A. Malich, R. Brauer, and W. Kaiser, “In vivo imaging of experimental arthritis with near-infrared fluorescence,” Arth. Rheum. 50, 961–967 (2004). [CrossRef]
  2. K. E. Adams, S. Ke, S. Kwon, F. Liang, Z. Fan, Y. Lu, K. Hirschi, M. E. Mawad, M. A. Barry, and E. M. Sevick-Muraca, “Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer,” J. Biomed. Opt. 12(2), 024017 (2007). [CrossRef] [PubMed]
  3. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  4. A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008). [CrossRef] [PubMed]
  5. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004). [CrossRef] [PubMed]
  6. J. Haller, D. Hyde, N. Deliolanis, R. de Kleine, M. Niedre, and V. Ntziachristos, “Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging,” J. Appl. Phys. 104(3), 795–802 (2008). [CrossRef]
  7. D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt. 14(3), 030501 (2009). [CrossRef] [PubMed]
  8. C. M. McCann, P. Waterman, J. L. Figueiredo, E. Aikawa, R. Weissleder, and J. W. Chen, “Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy,” Neuroimage 45(2), 360–369 (2009). [CrossRef] [PubMed]
  9. D. Hyde, R. D. de Kleine, S. A. MacLaurin, E. Miller, D. H. Brooks, T. Krucker, and V. Ntziachristos, “Hybrid FMT-CT imaging of amyloid-beta plaques in a murine Alzheimer’s disease model,” Neuroimage 44(4), 1304–1311 (2009). [CrossRef] [PubMed]
  10. M. C. Pierce, D. J. Javier, and R. Richards-Kortum, “Optical contrast agents and imaging systems for detection and diagnosis of cancer,” Int. J. Cancer 123(9), 1979–1990 (2008). [CrossRef] [PubMed]
  11. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008). [CrossRef] [PubMed]
  12. V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002). [CrossRef] [PubMed]
  13. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002). [CrossRef] [PubMed]
  14. H. Feng, J. Bai, X. Song, G. Hu, and J. Yao, “A near-infrared optical tomography system based on photomultiplier tube,” Int. J. Biomed. Imaging 2007, 1 (2007). [CrossRef] [PubMed]
  15. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003). [CrossRef] [PubMed]
  16. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express 13(7), 2564–2577 (2005). [CrossRef] [PubMed]
  17. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23(4), 492–500 (2004). [CrossRef] [PubMed]
  18. G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, “A hyperspectral fluorescence system for 3D in vivo optical imaging,” Phys. Med. Biol. 51(8), 2029–2043 (2006). [CrossRef] [PubMed]
  19. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007). [CrossRef] [PubMed]
  20. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360 ° geometry projections,” Opt. Lett. 32(4), 382–384 (2007). [CrossRef] [PubMed]
  21. G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci. 18(6), 707–711 (2008). [CrossRef]
  22. T. Lasser and V. Ntziachristos, “Optimization of 360° projection fluorescence molecular tomography,” Med. Image Anal. 11(4), 389–399 (2007). [CrossRef] [PubMed]
  23. B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4(8), 270–286 (1999). [CrossRef] [PubMed]
  24. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001). [CrossRef] [PubMed]
  25. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003). [CrossRef] [PubMed]
  26. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21(2), 231–241 (2004). [CrossRef]
  27. F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt. 48(13), 2496–2504 (2009). [CrossRef] [PubMed]
  28. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Non-contact fluorescence optical tomography with scanning patterned illumination,” Opt. Express 14(14), 6516–6534 (2006). [CrossRef] [PubMed]
  29. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11), 1779–1792 (1995). [CrossRef] [PubMed]
  30. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005). [CrossRef] [PubMed]
  31. A. Kak, and M. Slaney, Computerized Tomographic Imaging (New York: IEEE Press, 1987), ch. 7.
  32. R. Roy, A. Godavarty, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical tomography of a large tissue phantom using point illumination geometries,” J. Biomed. Opt. 11(4), 044007 (2006). [CrossRef] [PubMed]
  33. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004). [CrossRef] [PubMed]
  34. Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47(12), 2011–2016 (2008). [CrossRef] [PubMed]
  35. D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13(5), 766–773 (2009). [CrossRef] [PubMed]
  36. D. Hyde, E. Miller, D. H. Brooks, and V. Ntziachristos, “A statistical approach to inverting the Born ratio,” IEEE Trans. Med. Imaging 26(7), 893–905 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited