OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21452–21458

Semiconducting polymer waveguides for end-fired ultra-fast optical amplifiers

Ning Liu, Arvydas Ruseckas, Neil A. Montgomery, Ifor D. W. Samuel, and Graham A. Turnbull  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21452-21458 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method to fabricate conjugated polymer waveguides with well defined edge facets is demonstrated. The utility of the approach is explored for application as end-fired ultrafast optical amplifiers based on poly(9,9’-dioctylfluorene-co-benzothiadiazole). An internal gain of 19 dB was achieved on a 760 µm long waveguide at 565 nm wavelength. This fabrication procedure may be applied to a wide range of conjugated polymers and organic light-emitting devices, providing an important step towards future applications of organic integrated photonics.

© 2009 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(140.4480) Lasers and laser optics : Optical amplifiers
(220.0220) Optical design and fabrication : Optical design and fabrication
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: August 19, 2009
Revised Manuscript: October 24, 2009
Manuscript Accepted: November 3, 2009
Published: November 10, 2009

Ning Liu, Arvydas Ruseckas, Neil A. Montgomery, Ifor D. W. Samuel, and Graham A. Turnbull, "Semiconducting polymer waveguides for end-fired ultra-fast optical amplifiers," Opt. Express 17, 21452-21458 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. (Washington, D.C.) 107, 1272–1295 (2007).
  2. D. Amarasinghe, A. Ruseckas, A. E. Vasdekis, G. A. Turnbull, and I. D. W. Samuel, “Amplification of optical pulse sequences at a high repetition rate in a polymer slab waveguide,” Appl. Phys. Lett. 91, 011105 (2007) and Appl, Phys. Lett. 92, 149902 (2008). [CrossRef]
  3. D. Nilsson, S. Balslev, M. M. Gregersen, and A. Kristensen, “Microfabricated solid-state dye lasers based on a photodefinable polymer,” Appl. Opt. 44(23), 4965–4971 (2005). [CrossRef] [PubMed]
  4. M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus, “Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(1), 61–63 (2007). [CrossRef]
  5. M. Muccini, “A bright future for organic field-effect transistors,” Nat. Mater. 5(8), 605–613 (2006). [CrossRef] [PubMed]
  6. J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009). [CrossRef] [PubMed]
  7. G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, and I. D. W. Samuel, “Operating characteristics of a traveling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004). [CrossRef]
  8. R. Xia, G. Heliotis, Y. B. Hou, and D. D. C. Bradley, “Fluorene-based conjugated polymer optical gain media,” Org. Electron. 4(2-3), 165–177 (2003). [CrossRef]
  9. M. A. Reilly, B. Coleman, E. Y. B. Pun, R. V. Penty, I. H. White, M. Ramon, R. Xia, and D. D. C. Bradley, “Optical gain at 650 nm from a polymer waveguide with dye-doped cladding,” Appl. Phys. Lett. 87(23), 231116 (2005). [CrossRef]
  10. J. Clark, L. Bazzana, D. D. Bradley, J. Cabanillas-Gonzalez, G. Lanzani, D. G. Lidzey, J. Morgado, A. Nocivelli, W. C. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorene oligomers,” J. Nanophoton 2(1), 023504 (2008). [CrossRef]
  11. T. L. Koch, L. C. Chiu, and A. Yariv, “Analysis and performance of a picosecond dye laser amplifier chain,” J. Appl. Phys. 53(9), 6047–6059 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited