OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21465–21471

Diffraction engineering of multimode waveguides using computer-generated planar holograms

Shuo-Yen Tseng  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21465-21471 (2009)
http://dx.doi.org/10.1364/OE.17.021465


View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The self-imaging property in multimode waveguides is related to the waveguide widths and lengths. By engineering the diffraction properties of multimode waveguides, we propose a scheme to design devices with reduced self-imaging lengths at a fixed width. Using computer-generated planar holograms, the coupling coefficients between the guided modes are adjusted to generate the desired diffraction properties. Calculations based on the coupled-mode theory are presented. Devices are designed based on a silicon-on-insulator (SOI) platform. Beam propagation simulations are used to verify the coupled-mode theory analysis.

© 2009 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

History
Original Manuscript: September 17, 2009
Revised Manuscript: November 2, 2009
Manuscript Accepted: November 3, 2009
Published: November 10, 2009

Citation
Shuo-Yen Tseng, "Diffraction engineering of multimode waveguides using computer-generated planar holograms," Opt. Express 17, 21465-21471 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Okamoto, Fundamentals of Optical Waveguides. (Academic, Burlington, MA, 2006).
  2. D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10(9), 1875–1881 (1993). [CrossRef]
  3. O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63(4), 416–419 (1973). [CrossRef]
  4. R. Ulrich, “Image formation by phase coincidence in optical waveguides,” Opt. Commun. 13(3), 259–264 (1975). [CrossRef]
  5. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  6. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994). [CrossRef]
  7. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, “Experimental observation of linear and nonlinear optical bloch oscillations,” Phys. Rev. Lett. 83(23), 4756–4759 (1999). [CrossRef]
  8. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003). [CrossRef] [PubMed]
  9. R. Gordon, “Harmonic oscillation in a spatially finite array waveguide,” Opt. Lett. 29(23), 2752–2754 (2004). [CrossRef] [PubMed]
  10. N. K. Efremidis and D. N. Christodoulides, “Revivals in engineered waveguide arrays,” Opt. Commun. 246(4-6), 345–356 (2005). [CrossRef]
  11. T. W. Mossberg, “Planar holographic optical processing devices,” Opt. Lett. 26(7), 414–416 (2001). [CrossRef] [PubMed]
  12. T. Hashimoto, T. Saida, I. Ogawa, M. Kohtoku, T. Shibata, and H. Takahashi, “Optical circuit design based on a wavefront-matching method,” Opt. Lett. 30(19), 2620–2622 (2005). [CrossRef] [PubMed]
  13. P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol. 14(10), 2286–2293 (1996). [CrossRef]
  14. D. S. Levy, Y. M. Li, R. Scarmozzino, and R. M. Osgood, Jr., “A multimode interference-based variable power splitter in GaAs-AlGaAs,” IEEE Photon. Technol. Lett. 9(10), 1373–1375 (1997). [CrossRef]
  15. D. J. Y. Feng and T. S. Lay, “Compact multimode interference couplers with arbitrary power splitting ratio,” Opt. Express 16(10), 7175–7180 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-10-7175 . [CrossRef] [PubMed]
  16. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973). [CrossRef]
  17. S.-Y. Tseng, Y. Kim, C. J. K. Richardson, and J. Goldhar, “Implementation of discrete unitary transformations by multimode waveguide holograms,” Appl. Opt. 45(20), 4864–4872 (2006). [CrossRef] [PubMed]
  18. S.-Y. Tseng, C. Fuentes-Hernandez, D. Owens, and B. Kippelen, “Variable splitting ratio 2 x 2 MMI couplers using multimode waveguide holograms,” Opt. Express 15(14), 9015–9021 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-9015 . [CrossRef] [PubMed]
  19. S.-Y. Tseng, S. Choi, and B. Kippelen, “Variable-ratio power splitters using computer-generated planar holograms on multimode interference couplers,” Opt. Lett. 34(4), 512–514 (2009). [CrossRef] [PubMed]
  20. M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt. 34(30), 6898–6910 (1995). [CrossRef] [PubMed]
  21. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008). [CrossRef]
  22. K. Kawano, and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley, New York, 2001).
  23. G. R. Hadley, “Wide-angle beam propagation using Pade approximant operators,” Opt. Lett. 17(20), 1426–1428 (1992). [CrossRef] [PubMed]
  24. M. T. Chu, and G. H. Golub, Inverse Eigenvalue Problems: Theory, Algorithms, and Applications, (Oxford, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited