OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21472–21487

Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams

Chengliang Zhao, Yangjian Cai, and Olga Korotkova  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21472-21487 (2009)
http://dx.doi.org/10.1364/OE.17.021472


View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Radiation force of a focused scalar twisted Gaussian Schell-model (TGSM) beam on a Rayleigh dielectric sphere is investigated. It is found that the twist phase affects the radiation force and by raising the absolute value of the twist factor it is possible to increase both transverse and longitudinal trapping ranges at the real focus where the maximum on-axis intensity is located. Numerical calculations of radiation forces induced by a focused electromagnetic TGSM beam on a Rayleigh dielectric sphere are carried out. It is found that radiation force is closely related to the twist phase, degree of polarization and correlation factors of the initial beam. The trapping stability is also discussed.

© 2009 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.1670) Coherence and statistical optics : Coherent optical effects
(140.7010) Lasers and laser optics : Laser trapping
(260.5430) Physical optics : Polarization

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: August 10, 2009
Revised Manuscript: October 7, 2009
Manuscript Accepted: October 28, 2009
Published: November 10, 2009

Citation
Chengliang Zhao, Yangjian Cai, and Olga Korotkova, "Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams," Opt. Express 17, 21472-21487 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21472


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Wolf and E. Collett, “Partially coherent sources which produce same far-field intensity distribution as a laser,” Opt. Commun. 25(3), 293–296 (1978). [CrossRef]
  2. F. Gori, “Collet-Wolf sources and multimode lasers,” Opt. Commun. 34(3), 301–305 (1978). [CrossRef]
  3. P. De Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett-Wolf source,” Opt. Commun. 29(3), 256–260 (1979). [CrossRef]
  4. F. Wang and Y. Cai, “Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics,” J. Opt. Soc. Am. A 24(7), 1937–1944 (2007). [CrossRef]
  5. A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41(6), 383–387 (1982). [CrossRef]
  6. Q. S. He, J. Turunen, and A. T. Friberg, “Propagation and imaging experiments with Gaussian Schell-model beams,” Opt. Commun. 67(4), 245–250 (1988). [CrossRef]
  7. Y. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056607 (2005). [CrossRef] [PubMed]
  8. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002). [CrossRef]
  9. N. A. Ansari and M. S. Zubairy, “Second-harmonic generation by a Gaussian Schell-model source,” Opt. Commun. 59(5-6), 385–390 (1986). [CrossRef]
  10. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  11. R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10(1), 95–109 (1993). [CrossRef]
  12. R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10(9), 2008–2016 (1993). [CrossRef]
  13. K. Sundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10(9), 2017–2023 (1993). [CrossRef]
  14. R. Simon and N. Mukunda, “Twist phase in Gaussian-beam optics,” J. Opt. Soc. Am. A 15(9), 2373–2382 (1998). [CrossRef]
  15. A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11(6), 1818–1826 (1994). [CrossRef]
  16. D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41(7), 1391–1399 (1994). [CrossRef]
  17. K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12(3), 560–569 (1995). [CrossRef]
  18. R. Simon, A. T. Friberg, and E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems,” Pure Appl. Opt. 5(3), 331–343 (1996). [CrossRef]
  19. R. Simon and N. Mukunda, “Gaussian Schell-model beams and general shape invariance,” J. Opt. Soc. Am. A 16(10), 2465–2475 (1999). [CrossRef]
  20. S. A. Ponomarenko, “Twisted Gaussian Schell-model solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(3), 036618 (2001). [CrossRef] [PubMed]
  21. J. Serna and J. M. Movilla, “Orbital angular momentum of partially coherent beams,” Opt. Lett. 26(7), 405–407 (2001). [CrossRef] [PubMed]
  22. M. J. Bastiaans, “Wigner-distribution function applied to twisted Gaussian light propagating in first-order optical systems,” J. Opt. Soc. Am. A 17(12), 2475–2480 (2000). [CrossRef]
  23. P. Östlund and A. T. Friberg, “Radiometry and Radiation Efficiency of Twisted Gaussian Schell-Model Sources,” Opt. Rev. 8(1), 1–8 (2001). [CrossRef]
  24. Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams,” Opt. Lett. 27(4), 216–218 (2002). [CrossRef] [PubMed]
  25. Q. Lin and Y. Cai, “Fractional Fourier transform for partially coherent Gaussian-Schell model beams,” Opt. Lett. 27(19), 1672–1674 (2002). [CrossRef] [PubMed]
  26. Y. Cai, Q. Lin, and D. Ge, “Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams in dispersive and absorbing media,” J. Opt. Soc. Am. A 19(10), 2036–2042 (2002). [CrossRef]
  27. Y. Cai and L. Hu, “Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system,” Opt. Lett. 31(6), 685–687 (2006). [CrossRef] [PubMed]
  28. Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89(4), 041117 (2006). [CrossRef]
  29. Y. Cai and U. Peschel, “Second-harmonic generation by an astigmatic partially coherent beam,” Opt. Express 15(23), 15480–15492 (2007). [CrossRef] [PubMed]
  30. Y. Cai, Q. Lin, and O. Korotkova, “Ghost imaging with twisted Gaussian Schell-model beam,” Opt. Express 17(4), 2453–2464 (2009). [CrossRef] [PubMed]
  31. M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3(8), 1227–1238 (1986). [CrossRef]
  32. C. Brosseau, Fundamentals of polarized light-a statistical approach (Wiley, New York, 1998).
  33. D. F. V. James, “Changes of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11(5), 1641–1643 (1994). [CrossRef]
  34. F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23(4), 241–243 (1998). [CrossRef] [PubMed]
  35. G. P. Agrawal and E. Wolf, “Propagation-induced polarization changes in partially coherent optical beams,” J. Opt. Soc. Am. A 17(11), 2019–2023 (2000). [CrossRef]
  36. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian schell-model beams,” J. Opt. A, Pure Appl. Opt. 3(1), 301 (2001). [CrossRef]
  37. G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208(1-3), 9–16 (2002). [CrossRef]
  38. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5-6), 263–267 (2003). [CrossRef]
  39. Y. Cai, D. Ge, and Q. Lin, “Fractional Fourier transform for partially coherent and partially polarized Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt. 5(5), 453–459 (2003). [CrossRef]
  40. O. Korotkova, M. Salem, and E. Wolf, “Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source,” Opt. Lett. 29(11), 1173–1175 (2004). [CrossRef] [PubMed]
  41. E. Wolf, Introduction to the theory of coherence and polarization of light (Cambridge U. Press, 2007).
  42. O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun. 233(4-6), 225–230 (2004). [CrossRef]
  43. T. Shirai, O. Korotkova, and E. Wolf, “A method of generating electromagnetic Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt. 7(5), 232–237 (2005). [CrossRef]
  44. H. Roychowdhury and O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun. 249(4-6), 379–385 (2005). [CrossRef]
  45. F. Gori, M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez, “Realizability condition for electromagnetic Schell-model sources,” J. Opt. Soc. Am. A 25(5), 1016–1021 (2008). [CrossRef]
  46. B. Kanseri and H. C. Kandpal, “Experimental determination of electric cross-spectral density matrix and generalized Stokes parameters for a laser beam,” Opt. Lett. 33(20), 2410–2412 (2008). [CrossRef] [PubMed]
  47. M. Yao, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “The evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity,” Opt. Lett. 33(19), 2266–2268 (2008). [CrossRef] [PubMed]
  48. O. Korotkova, M. Yao, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “The state of polarization of a stochastic electromagnetic beam in an optical resonator,” J. Opt. Soc. Am. A 25(11), 2710–2720 (2008). [CrossRef]
  49. Y. Cai, O. Korotkova, H. T. Eyyuboğlu, and Y. Baykal, “Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express 16(20), 15834 (2008). [CrossRef] [PubMed]
  50. Y. Cai and O. Korotkova, “Twist phase-induced polarization changes in electromagnetic Gaussian Schell-model beams,” Appl. Phys. B 96(2-3), 499–507 (2009). [CrossRef]
  51. A. Ashkin, “Acceleration and trapping of particles by radiation forces,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  52. A. Ashkin, “Trapping of atoms by resonance radiation pressure,” Phys. Rev. Lett. 40(12), 729–732 (1978). [CrossRef]
  53. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  54. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996). [CrossRef]
  55. S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990). [CrossRef] [PubMed]
  56. C. Day, “Optical trap resolves the stepwise transfer of genetic information from DNA to RNA,” Phys. Today 59(1), 26–27 (2006). [CrossRef]
  57. C. H. Chen, P. T. Tai, and W. F. Hsieh, “Bottle beam from a bare laser for single-beam trapping,” Appl. Phys. Lett. 43, 6001–6006 (2004).
  58. J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett. 29(18), 2136–2138 (2004). [CrossRef] [PubMed]
  59. Q. Lin, Z. Wang, and Z. Liu, “Radiation forces produced by standing wave trapping of non-paraxial Gaussian beams,” Opt. Commun. 198(1-3), 95–100 (2001). [CrossRef]
  60. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  61. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32(11), 1393–1395 (2007). [CrossRef] [PubMed]
  62. C. L. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17(3), 1753–1765 (2009). [CrossRef] [PubMed]
  63. E. Wolf, “Coherence and polarization properties of electromagnetic laser modes,” Opt. Commun. 265(1), 60–62 (2006). [CrossRef]
  64. M. Salem and E. Wolf, “Coherence-induced polarization changes in light beams,” Opt. Lett. 33(11), 1180–1182 (2008). [CrossRef] [PubMed]
  65. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997). [CrossRef]
  66. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999). [CrossRef]
  67. J. Kestin, M. Sokolov, and W. A. Wakeham, “Viscosity of Liquid Water in the Range - 8°C to 150° C,” J. Phys. Chem. Ref. Data 7, 941–948 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited