OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21608–21614

Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity

Meisong Liao, Chitrarekha Chaudhari, Guanshi Qin, Xin Yan, Chihiro Kito, Takenobu Suzuki, Yasutake Ohishi, Morio Matsumoto, and Takashi Misumi  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21608-21614 (2009)
http://dx.doi.org/10.1364/OE.17.021608


View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A highly nonlinear composite fiber, which has a 1.5 μm chalcogenide glass core surrounded by a tellurite glass microstructure cladding, has been fabricated by the method of stack and draw. A tellurite glass capillary containing a As2S3 rod was sealed with negative pressure inside. Then this capillary and other empty capillaries were stacked into a tellurite glass tube, and elongated into a cane. This cane was then inserted into another tellurite glass jacket tube and drawn into the composite microstructure fiber. The fiber has a flattened chromatic dispersion together with a zero dispersion wavelength located in the near infrared range. The propagation losses at 1.55 μm were 18.3 dB/m. The nonlinear coefficient at 1.55 μm was 9.3 m−1W−1. Such a high nonlinear coefficient counteracts the high propagation losses to a large extent. A supercontinuum spectrum of 20-dB bandwidth covering 800-2400 nm was generated by this composite microstructure fiber.

© 2009 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.0190) Nonlinear optics : Nonlinear optics
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 10, 2009
Revised Manuscript: October 19, 2009
Manuscript Accepted: October 21, 2009
Published: November 11, 2009

Citation
Meisong Liao, Chitrarekha Chaudhari, Guanshi Qin, Xin Yan, Chihiro Kito, Takenobu Suzuki, Yasutake Ohishi, Morio Matsumoto, and Takashi Misumi, "Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity," Opt. Express 17, 21608-21614 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21608


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16(26), 22126–22128 (2008). [CrossRef] [PubMed]
  2. V. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002). [PubMed]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]
  4. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11(26), 3568–3573 (2003). [CrossRef] [PubMed]
  5. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004). [CrossRef] [PubMed]
  6. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009). [CrossRef] [PubMed]
  7. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17(18), 15481–15490 (2009). [CrossRef] [PubMed]
  8. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006). [CrossRef] [PubMed]
  9. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008). [CrossRef] [PubMed]
  10. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Supercontinuum generation in an As2Se3-based chalcogenide PCF using four-wave mixing and soliton self-frequency Shift,” OFC San Diego, 22–27 March 2009, OWU6 (2009).
  11. D. I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  12. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005). [CrossRef] [PubMed]
  13. C. Chaudhari, T. Suzuki, and Y. Ohishi, “Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-Band,” OFC San Diego, 22–26 March 2009, OTuC4 (2009).
  14. L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nguyen, J. L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008). [CrossRef]
  15. W. Q. Zhang, V. S. Afshar, H. Ebendorff-Heidepriem, and T. M. Monro, “Record nonlinearity in optical fibre,” Electron. Lett. 44(25), 1453 (2008). [CrossRef]
  16. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, OFC Los Angeles, 22–27 February 2004, PDP26 (2004).
  17. A. Mori, K. Shikano, W. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, and S. Aozasa, ECOC Stockholm, 5–9 September 2004, Th3.3.6 (2004).
  18. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gbit/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15(3), 440–442 (2003). [CrossRef]
  19. K. Kikuchi, K. Taira, and N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing,” Electron. Lett. 38(4), 166–167 (2002). [CrossRef]
  20. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007). [CrossRef]
  21. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004). [CrossRef] [PubMed]
  22. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  23. V. Finazzi, T. M. Monro, and D. J. Richardson, “Small-core silica holey fibers: nonlinearity and confinement loss trade-offs,” J. Opt. Soc. Am. B 20(7), 1427–1436 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited