OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21704–21711

Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber

A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21704-21711 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The strong radial confinement and the pronounced evanescent field of the guided light in optical nanofibers yield favorable conditions for ultra-sensitive surface spectroscopy of molecules deposited on the fiber. Using the guided mode of the nanofiber for both excitation and fluorescence collection, we present spectroscopic measurements on 3,4,9,10-perylene-tetracarboxylic dianhydride molecules (PTCDA) at ambient conditions. Surface coverages as small as 1 ‰ of a compact monolayer still give rise to fluorescence spectra with a good signal to noise ratio. Moreover, we analyze and quantify the self-absorption effects due to reabsorption of the emitted fluorescence light by circumjacent surface-adsorbed molecules distributed along the fiber waist.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(240.6490) Optics at surfaces : Spectroscopy, surface
(300.2530) Spectroscopy : Fluorescence, laser-induced
(310.6860) Thin films : Thin films, optical properties

ToC Category:

Original Manuscript: October 12, 2009
Revised Manuscript: November 5, 2009
Manuscript Accepted: November 5, 2009
Published: November 11, 2009

A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, "Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber," Opt. Express 17, 21704-21711 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Bordo and H.-G. Rubahn, Optics and spectroscopy at surfaces and interfaces (Wiley-VCH, Weinheim 2006).
  2. Ph. H. Paul and G. Kychakoff, "Fiber-optic evanescent field absorption sensor," Appl. Phys. Lett. 51, 12-14 (1987). [CrossRef]
  3. A. Messica, A. Greenstein, and A. Katzir, "Theory of fiber-optic, evanescent-wave spectroscopy and sensors," Appl. Opt. 35, 2274-2284 (1996). [CrossRef] [PubMed]
  4. R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development," Fresen. J. Anal. Chem. 362, 349-373 (1998). [CrossRef]
  5. S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, "Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers," J. Appl. Phys. 64, 3732-3734 (1988). [CrossRef]
  6. Xh. Fang and W. Tan, "Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation," Anal. Chem. 71, 3101-3105 (1999). [CrossRef] [PubMed]
  7. F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242, 445-455 (2004). [CrossRef]
  8. J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005). [CrossRef] [PubMed]
  9. V. Grubsky and A. Savchenko "Glass micro-fibers for efficient third harmonic generation," Opt. Express 13, 6798-6806 (2005). [CrossRef] [PubMed]
  10. F. Le Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004). [CrossRef]
  11. G. Sagu’e, E. Vetsch,W. Alt, D. Meschede, and A. Rauschenbeutel, "Cold-Atom Physics Using Ultrathin Optical Fibres: Light-Induced Dipole Forces and Surface Interactions," Phys. Rev. Lett. 99, 163602 (2007). [CrossRef] [PubMed]
  12. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 11952-11958 (2007). [CrossRef] [PubMed]
  13. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence," Opt. Express 15, 5431-5438 (2007). [CrossRef] [PubMed]
  14. T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992). [CrossRef]
  15. F. Warken, A. Rauschenbeutel, and T. Bartholomäus, "Fiber pulling profits from precise positioning," Photon. Spectra 42(3), 73 (2008).
  16. U. Gómez, M. Leonhardt, H. Port, and H. C. Wolf, "Optical properties of amorphous ultrathin films of perylene derivatives," Chem. Phys. Lett. 268, 1-6 (1997). [CrossRef]
  17. S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev. 97, 1793-1896 (1997). [CrossRef]
  18. H. Proehl, Th. Dienel, R. Nitsche, and T. Fritz, "Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single molecules to molecular stacks," Phys. Rev. Lett. 93, 097403 (2004). [CrossRef] [PubMed]
  19. T. Ogawa, K. Kuwamoto, S. Isoda, T. Kobayashi, and N. Karl "3,4:9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography," Acta Crystallogr. B 55, 123-130 (1999). [CrossRef]
  20. F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, "Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes," Phys. Rev. A 72, 032509 (2005). [CrossRef]
  21. S. R. Forrest and Y. Zhang, "Ultrahigh-vacuum quasiepitaxial growth of model van der Waals thin-films. I. Theory," Phys. Rev. B 49, 11297-11308 (1994). [CrossRef]
  22. W. E. Moerner and D. P. Fromm, "Methods of single-molecule fluorescence spectroscopy and microscopy," Rev. Sci. Instrum. 74, 3597 (2003). [CrossRef]
  23. The absorption cross section of PTCDA was calculated from the molar extinction coefficient ∑ of PTCDA in solution [M. Hoffmann, "Frenkel and Charge-Transfer Excitons in Quasi-One-Dimensional Molecular Crystals with Strong Intermolecular Orbital Overlap," Dissertation (Institute of Applied Photophysics, Technical University of Dresden, Dresden, Germany), p. 12 (2000)] according to ⌠ = 3/2×2.303/NA ×∑. The factor 3/2 accounts for the different dimensionality on the fiber surface compared to solution. We note that the exact value of ⌠ may differ from the one calculated by a factor of the order of one due to differences in the refractive indices.
  24. V. Bulović, P. E. Burrows, S. R. Forrest, J. A. Cronin, and M. E. Thompson, "Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA): I. Spectroscopic properties of thin films and solutions," Chem. Phys. 210, 1-12 (1996). [CrossRef]
  25. K. Puech, H. Fröb, M. Hoffmann, and K. Leo, "Luminescence of ultrathin organic films: transition from monomer to excimer emission," Opt. Lett. 21, 1606-1608 (1996). [CrossRef] [PubMed]
  26. X. Fan, I. M. White, S. I. Shopoua, H. Zhu, J. D. Suter, and Y. Sun, " Sensitive optical biosensors for unlabeled targets: A review," Anal. Chim. Acta 620, 8-26 (2008). [CrossRef] [PubMed]
  27. M. D. Marazuela and M. C. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002). [CrossRef] [PubMed]
  28. M. Sumetsky, "Optical Micro/Nanofibers for Sensing Applications," in X. Fan, ed., Advanced Photonic Structures for Biological and Chemical Detection, (Springer, New York 2009), pp. 337-376.
  29. G. J. Pendock, H. S. MacKenzie, and F. P. Payne "Dye lasers using tapered optical fibers," Appl. Opt. 32, 5236-5242 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited