OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21723–21731

Diffractionless beam in free space with adiabatic changing refractive index in a single mode tapered slab waveguide

Chang-Ching Tsai, Claudio Vinegoni, and Ralph Weissleder  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 21723-21731 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (381 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel design to produce a free space diffractionless beam by adiabatically reducing the difference of the refractive index between the core and the cladding regions of a single mode tapered slab waveguide. To ensure only one propagating eigenmode in the adiabatic transition, the correlation of the waveguide core width and the refractive index is investigated. Under the adiabatic condition, we demonstrate that our waveguide can emit a diffractionless beam in free space up to 500 micrometers maintaining 72% of its original peak intensity. The proposed waveguide could find excellent applications for imaging purposes where an extended depth of field is required.

© 2009 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(130.0130) Integrated optics : Integrated optics
(230.7400) Optical devices : Waveguides, slab

ToC Category:
Optical Devices

Original Manuscript: July 22, 2009
Revised Manuscript: October 7, 2009
Manuscript Accepted: October 12, 2009
Published: November 12, 2009

Chang-Ching Tsai, Claudio Vinegoni, and Ralph Weissleder, "Diffractionless beam in free space with adiabatic changing refractive index in a single mode tapered slab waveguide," Opt. Express 17, 21723-21731 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello and E. H. K. Stelzer, "High-resolution three dimensional imaging of large specimens with light sheet-based microscopy," Nat. Methods 4, 311-313 (2007). [PubMed]
  2. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, "High-resolution optical coherence tomography over a large depth range with an axicon lens," Opt Lett. 27, 243-245 (2002). [CrossRef]
  3. G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc and M. Sypek, "Imaging with extended focal depth by means of lenses with radial and angular modulation," Opt. Express 15, 9184-9193 (2007). [CrossRef] [PubMed]
  4. J. A. García, S . Bará, M. G . García, Z . Jaroszewicz, A . Kolodziejczyk, and K . Petelczyc, "Imaging with extended focal depth by means of the refractive light sword optical element," Opt. Express 16, 18371-18378 (2008). [CrossRef]
  5. B.-Z. Dong, J. Liu, B.-Y. Gu, and G.-Z. Yang, "Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution," J. Opt. Soc. Am. A 18, 1465-1470 (2001). [CrossRef]
  6. E. R. Dowski, Jr. and W. T. Cathey, "Extended depth of field through wave-front coding," Appl. Opt. 34, 1859-1866 (1995). [CrossRef] [PubMed]
  7. J. G. Ritter, R. Veith, J.-P. Siebrasse and U. Kubitscheck, "High-contrast single-particle tracking by selective focal plane illumination microscopy," Opt. Express 16, 7142-7152 (2008). [CrossRef] [PubMed]
  8. D.-Z. Lin, C.-H. Chen, C.-K. Chang, T.-D. Cheng, C.-S. Yeh, and C.-K. Lee, "Subwavelength nondiffraction beam generated by a plasmonic lens," Appl. Phys. Lett.  92, 233106-1-3 (2008). [CrossRef]
  9. J. Ojeda-Castañeda, E. Tepichin, and A. Diaz, "Zone plate for arbitrarily high focal depth," Appl. Opt. 29, 994-997 (1990). [CrossRef] [PubMed]
  10. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, "Imaging properties of axicon in a scanning optical system," Appl. Opt. 31, 6653-6657 (1992). [CrossRef] [PubMed]
  11. J. Arlt, V. Garces-Chavez, W. Sibbett, K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001). [CrossRef]
  12. A. J. Cox and D. C. Dibble, "Nondiffracting beam from a spatially filtered Fabry-Perot resonator," J. Opt. Soc. Am. A 9, 282-286 (1992). [CrossRef]
  13. Jari Turunen, Antti Vasara, and Ari T. Friberg, "Holographic generation of diffraction-free beams," Appl. Opt. 27, 3959-3962 (1988). [CrossRef] [PubMed]
  14. J. H. Mcleod, "The Axicon: A New Type of Optical Element," J. Opt. Soc. Am. 44, 592-597 (1954) [CrossRef]
  15. J. Durnin, "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A 4, 651-654 (1987). [CrossRef]
  16. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. 55, 2389-2391 (1989). [CrossRef]
  17. Y. Xu, R. K. Lee, and A. Yariv, "Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry," Opt. Lett. 25, 755-757 (2000). [CrossRef]
  18. C.-C. Tsai, L. B. Glebov, and B. Ya. Zeldovich, "Adiabatic three-wave volume hologram: large efficiency independent of grating strength and polarization," Opt. Lett. 31, 718-720 (2006) [CrossRef] [PubMed]
  19. J. Gerdes and R. Pregla, "Beam-propagation algorithm based on the method of lines," J. Opt. Soc. Am. B 8, 389-394 (1991). [CrossRef]
  20. J. J. Gerdes, "Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines," Electron. Lett. 30, 550-551 (1994). [CrossRef]
  21. S. J. Al-Bader and H. A. Jamid, "Perfectly matched layer absorbing boundary conditions for the method of lines modelling scheme," IEEE Microw. Guided Wave Lett. 8, 357-359 (1998) [CrossRef]
  22. J. Gerdes, B. Lunitz, D. Benish and R. Pregla, "Analysis of slab waveguide discontinuities including radiation and absorption effects," Electron. Lett. 28, 1013-1015 (1992). [CrossRef]
  23. M. Imtaar and S. J. Al-Bader, "Analysis of diffraction from abruptly -terminated optical fibers by the method of lines," J. Lightwave Technol. 13, 137-141 (1995). [CrossRef]
  24. M. G. Moharam, D. A. Pommet, and E. B. Grann, T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  25. 25. J. Hecht, Understanding Fiber Optics, (Prentice Hall, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited