OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21882–21890

CO2 laser induced long period gratings in optical microfibers

Haifeng Xuan, Wei Jin, and Min Zhang  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21882-21890 (2009)
http://dx.doi.org/10.1364/OE.17.021882


View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Long period gratings (LPGs) are fabricated by use of focused high frequency CO2 laser pulses to periodically modify the transverse dimension of silica microfibers. A 20-period LPG with a 27dB attenuation dip is realized in a microfiber with a diameter of ~6.3μm. The resonant wavelength has a negative temperature coefficient and a high sensitivity to external refractive index. The microfiber LPGs may be useful in micron scale in-fiber devices and sensors.

© 2009 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 30, 2009
Revised Manuscript: October 24, 2009
Manuscript Accepted: October 24, 2009
Published: November 13, 2009

Citation
Haifeng Xuan, Wei Jin, and Min Zhang, "CO2 laser induced long period gratings in optical microfibers," Opt. Express 17, 21882-21890 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21882


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996). [CrossRef] [PubMed]
  2. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996). [CrossRef] [PubMed]
  3. Y.-P. Wang, L. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31(23), 3414–3416 (2006). [CrossRef] [PubMed]
  4. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, “Long period grating resonances in photonic bandgap fiber,” Opt. Express 14(7), 3007–3014 (2006). [CrossRef] [PubMed]
  5. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008). [CrossRef] [PubMed]
  6. I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett. 24(18), 1263–1265 (1999). [CrossRef] [PubMed]
  7. C. Y. Lin, G. W. Chern, and L. A. Wang, “Periodical corrugated structure for forming sampled fiber Bragg grating and long-period fiber grating with tunable coupling strength,” J. Lightwave Technol. 19(8), 1212–1220 (2001). [CrossRef]
  8. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999). [CrossRef] [PubMed]
  9. M. Sumetsky, “Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators,” J. Lightwave Technol. 26(1), 21–27 (2008). [CrossRef]
  10. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  11. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005). [CrossRef] [PubMed]
  12. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  13. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  14. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005). [CrossRef] [PubMed]
  15. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997). [CrossRef] [PubMed]
  16. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  17. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. S. J. Russell, “Miniature all-fiber devices based on CO(2) laser microstructuring of tapered fibers,” Opt. Lett. 26(15), 1137–1139 (2001). [CrossRef] [PubMed]
  18. W. Ding, S. R. Andrews, and S. A. Maier, “Modal coupling in surface-corrugated long-period-grating fiber tapers,” Opt. Lett. 33(7), 717–719 (2008). [CrossRef] [PubMed]
  19. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J. 138, 343–354 (1991).
  20. H. F. Xuan, W. Jin, J. Ju, Y. P. Wang, M. Zhang, Y. B. Liao, and M. H. Chen, “Hollow-core photonic bandgap fiber polarizer,” Opt. Lett. 33(8), 845–847 (2008). [CrossRef] [PubMed]
  21. D. Östling and H. E. Engan, “Narrow-band acousto-optic tunable filtering in a two-mode fiber,” Opt. Lett. 20(11), 1247–1249 (1995). [CrossRef] [PubMed]
  22. C. Y. H. Tsao, D. N. Payne, and W. A. Gambling, “Modal characteristics of three-layered optical fiber waveguides: a modified approach,” J. Opt. Soc. Am. A 6(4), 555–563 (1989). [CrossRef]
  23. Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, “Novel Fiber-Optic Sensors Based on Long-Period Fiber Gratings Written by High-Frequency CO 2 Laser Pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003). [CrossRef]
  24. J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,” J. Lightwave Technol. 25(5), 1306–1312 (2007). [CrossRef]
  25. Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008). [CrossRef] [PubMed]
  26. Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20(8), 626–628 (2008). [CrossRef]
  27. I. Del Villar, I. R. Matias, and F. J. Arregui, “Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive-index materials,” Opt. Lett. 30(18), 2363–2365 (2005). [CrossRef] [PubMed]
  28. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13(19), 7609–7614 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited