OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22031–22040

THz photomixing synthesizer based on a fiber frequency comb

Gaël Mouret, Francis Hindle, Arnaud Cuisset, Chun Yang, Robin Bocquet, Michel Lours, and Daniele Rovera  »View Author Affiliations

Optics Express, Vol. 17, Issue 24, pp. 22031-22040 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (360 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A frequency doubled erbium doped modelocked fiber frequency comb is used to implement a THz photomixing synthesizer. The useful THz linewidth is in order of 150 kHz and has been assessed along with the frequency accuracy by spectroscopic measurements demonstrating a relative accuracy of 10−8 at frequencies around 1 THz. The THz synthesizer is used to implement a THz spectrometer to study the rotational absorption spectrum of carbonyl sulfide (OCS). Measurement of the principal transitions between 813 GHz and 1283 GHz allowed the properties of the THz spectrometer to be compared with competing techniques, and demonstrates the potential of the THz photomixing synthesizer as an alternative means to explore the THz domain.

© 2009 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 10, 2009
Revised Manuscript: October 26, 2009
Manuscript Accepted: October 26, 2009
Published: November 17, 2009

Gaël Mouret, Francis Hindle, Arnaud Cuisset, Chun Yang, Robin Bocquet, Michel Lours, and Daniele Rovera, "THz photomixing synthesizer based on a fiber frequency comb," Opt. Express 17, 22031-22040 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Mittleman, Sensing with THz radiation (Springer, 2003).
  2. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995). [CrossRef]
  3. C. Yang, J. Buldyreva, I. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, and F. Hindle, “Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies,” J. Quant. Spectrosc. Radiat. Transf. 109(17-18), 2857–2868 (2008). [CrossRef]
  4. I. Park, C. Sydlo, I. Fischer, W. Elsäßer, and H. L. Hartnagel, “Generation and spectroscopic application of tunable continuous-wave terahertz radiation using a dual-mode semiconductor laser,” Meas. Sci. Technol. 19(6), 065305 (2008). [CrossRef]
  5. F. Hindle, A. Cuisset, R. Bocquet, and G. Mouret, “Continuous -wave THz by photomxing: application to gas pollutant detection and quantification,” Compte rendu de l’Académie des Sciences 9, 262–275 (2008).
  6. S. Matsuura, M. Tani, H. Abe, K. Sakai, H. Ozeki, and S. Saito, “High-Resolution Terahertz Spectroscopy by a Compact Radiation Source Based on Photomixing with Diode Lasers in a Photoconductive Antenna,” J. Mol. Spectrosc. 187(1), 97–101 (1998). [CrossRef] [PubMed]
  7. A. S. Pine, R. D. Suenram, E. R. Brown, and K. A. McIntosh, “A Terahertz Photomixing Spectrometer: Application to SO2 Self Broadening,” J. Mol. Spectrosc. 175(1), 37–47 (1996). [CrossRef]
  8. S. Matton, F. Rohart, R. Bocquet, D. Bigourd, A. Cuisset, F. Hindle, and G. Mouret, “Terahertz spectroscopy applied to the measurement of strengths and self-broadening coefficients for high-J lines of OCS,” J. Mol. Spectrosc. 239(2), 182–189 (2006). [CrossRef]
  9. S. Matsuura, P. Chen, G. A. Blake, and H. M. Pickett, “A tunable cavity-locked diode laser source for terahertz photomixing,” IEEE Trans. Microw. Theory Tech. 48(3), 380–387 (2000). [CrossRef]
  10. P. Chen, J. C. Pearson, H. M. Pickett, S. Matsuura, and G. A. Blake, “Submillimeter-wave measurements and analysis of the ground and v(2)=1 states of water,” Astrophys. J. Suppl. Ser. 128(1), 371–385 (2000). [CrossRef]
  11. P. Chen, J. C. Pearson, H. M. Pickett, S. Matsuura, and G. A. Blake, “Measurements of 14NH3 in the ν2=1 state by a solid-state, photomixing, THz spectrometer, and a simultaneous analysis of the microwave, terahertz, and infrared transitions between the ground and ν2 inversion–rotation levels,” J. Mol. Spectrosc. 236(1), 116–126 (2006). [CrossRef]
  12. L. Aballea and L. F. Constantin, “Optoelectronic difference-frequency synthesiser: terahertz-waves for high-resolution spectroscopy,” Eur. Phys. J. Appl. Phys. 45(2), 21201 (2009). [CrossRef]
  13. S. T. Cundiff, and L. Hollberg, “Absolute Optical Frequency Metrology”, Encyclopedia of Modern Optics, 82–90 (2004).
  14. T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006). [CrossRef]
  15. J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006). [CrossRef]
  16. Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett. 30(23), 3231–3233 (2005). [CrossRef] [PubMed]
  17. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006). [CrossRef] [PubMed]
  18. A. Fayt, R. Vandenhaute, and J. G. Lahaye, “Global rovibrational analysis of carbonyl sulfide,” J. Mol. Spectrosc. 119(2), 233–266 (1986). [CrossRef]
  19. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, Millimeter, and Microwave Spectral Line Catalog,” J. Quant. Spectrosc. Radiat. Transf. 60(5), 883–890 (1998). [CrossRef]
  20. P. Helminger, F. C. De Lucia, and W. Gordy, “Extension of microwave absorption spectroscopy to 0.37 –mm wavelength,” Phys. Rev. Lett. 25(20), 1397–1399 (1970). [CrossRef]
  21. G. Y. Golubiatnikov, A. V. Lapinov, A. Guarnieri, and R. Knöchel, “Precise Lamb-dip measurements of millimeter and submillimeter wave rotational transitions of 16O12C32S,” J. Mol. Spectrosc. 234(1), 190–194 (2005). [CrossRef]
  22. H. M. Pickett, “The fitting and predictions of vibration-rotation spectra with spin interactions,” J. Mol. Spectrosc. 148(2), 371–377 (1991). [CrossRef]
  23. D. L. Albritton, A. L. Schmeltekopf, and R. N. Zare, “An introduction to the Least-Squares Fitting of Spectroscopic Data”, in Molecular Spectroscopy: Modern Research, K.N. Rao, ed. (Academic Press, New York, 1976).
  24. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy. Comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007). [CrossRef]
  25. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, E. Fertein, R. Bocquet, and G. Mouret, “Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy,” Opt. Lett. 31(15), 2356–2358 (2006). [CrossRef] [PubMed]
  26. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005). [CrossRef]
  27. A. Beck, G. Ducournau, M. Zaknoune, E. Peytavit, T. Akalin, J. F. Lampin, F. Mollot, F. Hindle, C. Yang, and G. Mouret, “High-efficiency uni-travelling-carrier photomixer at 1.55 µm and spectroscopy application up to 1.4 THz,” Electron. Lett. 44(22), 1320–1322 (2008). [CrossRef]
  28. M Mikulics M, EA Michael, M. Marso, M. Lepsa, A. van der Hart, H. Luth, A. Dewald, S. Stancek, M. Mozolik, and P. Kordos, “Travelling-wave photomixers fabricated on high energy nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 89, 071103 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited