OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22114–22123

Microwave generation in an electro-absorption modulator integrated with a DFB laser subject to optical injection

Ning Hua Zhu, Hong Guang Zhang, Jiang Wei Man, Hong Liang Zhu, Jian Hong Ke, Yu Liu, Xin Wang, Hai Qing Yuan, Liang Xie, and Wei Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 22114-22123 (2009)
http://dx.doi.org/10.1364/OE.17.022114


View Full Text Article

Enhanced HTML    Acrobat PDF (376 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(250.0250) Optoelectronics : Optoelectronics
(250.0040) Optoelectronics : Detectors
(250.4110) Optoelectronics : Modulators

ToC Category:
Optoelectronics

History
Original Manuscript: September 29, 2009
Revised Manuscript: November 4, 2009
Manuscript Accepted: November 4, 2009
Published: November 18, 2009

Citation
Ning Hua Zhu, Hong Guang Zhang, Jiang Wei Man, Hong Liang Zhu, Jian Hong Ke, Yu Liu, Xin Wang, Hai Qing Yuan, Liang Xie, and Wei Wang, "Microwave generation in an electro-absorption modulator integrated with a DFB laser subject to optical injection," Opt. Express 17, 22114-22123 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-22114


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett. 38(7), 334–335 (2002). [CrossRef]
  2. R. P. Braun, G. Grosskopf, R. Rohde, and F. Schmidt, “Optical millimeter-wave generation and transmission experiments for mobile 60 GHz band communications,” Electron. Lett. 32(7), 626–628 (1996). [CrossRef]
  3. R. Braun, G. Grosskopf, H. Heidrich, C. Helmolt, R. Kaiser, K. Kr¨uger, U. Krüger, D. Rohde, F. Schmidt, R. Stenzel, and D. Trommer, “Optical microwave generation and transmission experiments in the 12- and 60-GHz region for wireless communications,” IEEE Trans. Microw. Theory Tech. 46(4), 320–330 (1998). [CrossRef]
  4. U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjær, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE Trans. Microw. Theory Tech. 46(5), 458–468 (1998). [CrossRef]
  5. S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J.-P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006). [CrossRef]
  6. S. Faci, C. Tripon-Canseliet, A. Benlarbi-Dela, G. Alquie, S. Formont, and J. Chazelas, “Optical generation of microwave signal for FMCW radar applications,” Microw. Opt. Technol. Lett. 51(3), 690–693 (2009). [CrossRef]
  7. A. J. Lowery and P. C. R. Gurney, “Comparison of Optical Processing Techniques for Optical Microwave Signal Generation,” IEEE Trans. Microw. Theory Tech. 46(2), 142–150 (1998). [CrossRef]
  8. A. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006). [CrossRef]
  9. X. J. Meng and J. Menders, “Optical generation of microwave signals using SSB-based frequency-doubling scheme,” Electron. Lett. 39(1), 103–105 (2003). [CrossRef]
  10. L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999). [CrossRef]
  11. A. C. Davidson, F. W. Wise, and R. C. Compton, “Low phase noise 33–40-GHz signal generation using multilaser phase-locked loops,” IEEE Photon. Technol. Lett. 10(9), 1304–1306 (1998). [CrossRef]
  12. M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004). [CrossRef]
  13. W. Liang, A. Yariv, A. Kewitsch, and G. Rakuljic, “Coherent combining of the output of two semiconductor lasers using optical phase-lock loops,” Opt. Lett. 32(4), 370–372 (2007). [CrossRef] [PubMed]
  14. K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE J. Quantum Electron. 18(10), 1669–1674 (1982). [CrossRef]
  15. Z. Ahmed, H. F. Liu, D. Novak, Y. Ogawa, M. D. Pelusi, and D. Y. Kim, “Locking Characteristics of a Passively Mode-Locked Monolithic DBR Laser Stabilized by optical Injection,” IEEE Photon. Technol. Lett. 8(1), 37–39 (1996). [CrossRef]
  16. C. Laperle, M. Svilans, M. Poirier, and M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microw. Theory Tech. 47(7), 1219–1224 (1999). [CrossRef]
  17. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18(6), 976–983 (1982). [CrossRef]
  18. Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength Erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006). [CrossRef]
  19. F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 18(24), 2563–2565 (2006). [CrossRef]
  20. I. G. Insua and C. G. Schäffer, “Optical microwave signal generation using a fiber loop,” J. Lightwave Technol. 25(11), 3341–3349 (2007). [CrossRef]
  21. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J. Huignard, and A. Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave Signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008). [CrossRef]
  22. S. L. Pan and J. P. Yao, “Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter,” Opt. Express 17(14), 12167–12173 (2009). [CrossRef] [PubMed]
  23. J. Huang, C. Z. Sun, B. Xiong, and Y. Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express 17(23), 20727–20734 (2009). [CrossRef] [PubMed]
  24. T. H. Wood, “Direct measurement of the electric-field-dependent absorption coefficient in GaAs/AlGaAs multiple quantum wells,” Appl. Phys. Lett. 48(21), 1413–1415 (1986). [CrossRef]
  25. R. B. Welstand, S. A. Pappert, C. K. Sun, J. T. Zhu, Y. Z. Liu, and P. K. L. Yu, “Dual-function electroabsorption waveguide modulator/detector for optoelectronic transceiver applications,” IEEE Photon. Technol. Lett. 8(11), 1540–1542 (1996). [CrossRef]
  26. L. D. Westbrook and D. G. Moodie, “Simultaneous bi-directional analogue fibre-optic transmission using an electroabsorption modulator,” Electron. Lett. 32(19), 1806–1807 (1996). [CrossRef]
  27. D. S. Shin, G. L. Li, C. K. Sun, S. A. Pappert, K. K. Loi, W. S. C. Chang, and P. K. L. Yu, Fellow, IEEE, andP. K. L. Yu, Senior Member, IEEE, “Optoelectronic RF Signal Mixing Using an Electroabsorption Waveguide as an Integrated Photodetector/Mixer,” IEEE Photon. Technol. Lett. 12(2), 193–195 (2000). [CrossRef]
  28. N. H. Zhu, G. H. Hou, H. P. Huang, G. Z. Xu, T. Zhang, Y. Liu, H. L. Zhu, L. J. Zhao, and W. Wang, “Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser,” IEEE J. Quantum Electron. 43(7), 535–544 (2007). [CrossRef]
  29. S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989). [CrossRef]
  30. N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved Optical Heterodyne Methods for Measuring Frequency Responses of Photodectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited