OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22124–22137

Analytical study of optical bistability in silicon-waveguide resonators

Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 22124-22137 (2009)
http://dx.doi.org/10.1364/OE.17.022124


View Full Text Article

Acrobat PDF (228 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical model that describes accurately the nonlinear phenomenon of optical bistability in silicon-waveguide resonators but remains amenable to analytical results. Using this model, we derive a transcendental equation governing the intensity of a continuous wave transmitted through a Fabry–Perot resonator formed using a silicon-oninsulator waveguide. This equation reveals a dual role of free carriers in the formation of optical bistability in silicon. First, it shows that free-carrier absorption results in a saturation of the transmitted intensity. Second, the free-carrier dispersion and the thermo-optic effect may introduce phase shifts far exceeding those resulting from the Kerr effect alone, thus enabling one to achieve optical bistability in ultrashort resonators that are only a few micrometers long. Bistability can occur even when waveguide facets are not coated because natural reflectivity of the silicon– r interface can provide sufficient feedback. We find that it is possible to control the input-output characteristics of silicon-based resonators by changing the free-carrier lifetime using a reverse-biased p-n junction. We show theoretically that such a technique is suitable for realization of electronically assisted optical switching at a fixed input power and it may lead to silicon-based, nanometer-size, optical memories.

© 2009 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(140.4780) Lasers and laser optics : Optical resonators
(190.1450) Nonlinear optics : Bistability
(230.4320) Optical devices : Nonlinear optical devices
(250.6715) Optoelectronics : Switching
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 1, 2009
Revised Manuscript: November 6, 2009
Manuscript Accepted: November 17, 2009
Published: November 18, 2009

Citation
Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal, "Analytical study of optical bistability in silicon-waveguide resonators," Opt. Express 17, 22124-22137 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-22124


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-oninsulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998). [CrossRef]
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, Hoboken, 2004).
  3. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004). [CrossRef]
  4. B. Jalali, O. Boyraz, V. Raghunathan, D. Dimitropoulos, and P. Koonath, "Silicon Raman amplifiers, lasers and their applications," in Active and Passive Optical Components for WDM Communications V, A. K. Dutta, Y. Ohishi, N. K. Dutta, and J. Moerk, Eds., Proc. SPIE 6014, 21-26 (2005).
  5. R. A. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006). [CrossRef]
  6. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, "Raman-based silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 412-421 (2006). [CrossRef]
  7. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003). [CrossRef]
  8. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006). [CrossRef]
  9. H. K. Tsang and Y. Liu, "Nonlinear optical properties of silicon waveguides," Semicond. Sci. Technol. 23, 064007(1-9) (2008). [CrossRef]
  10. R. Claps, D. Dimitropoulos, and B. Jalali, "Stimulated Raman scattering in silicon waveguides," Electron. Lett. 38, 1352-1354 (2002). [CrossRef]
  11. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003). [CrossRef]
  12. T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004). [CrossRef]
  13. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon-on-insulator waveguides," Opt. Express 12, 2774-2780 (2004). [CrossRef]
  14. O. Boyraz and B. Jalali, "Demonstration of 11 dB fiber-to-fiber gain in a silicon Raman amplifier," IEICE Electron. Exp. 1, 429-434 (2004). [CrossRef]
  15. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004). [CrossRef]
  16. R. Espinola, J. Dadap, R. Osgood, S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultrasmall siliconon-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004). [CrossRef]
  17. R. Jones, H. Rong, A. Liu, A.W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous-wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005). [CrossRef]
  18. S. Fathpour, K. K. Tsia, and B. Jalali, "Energy harvesting in silicon Raman amplifiers," Appl. Phys. Lett. 89, 061109(1-3) (2006). [CrossRef]
  19. R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005). [CrossRef]
  20. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, "Observation of Raman emission in silicon waveguides at 1.54 m," Opt. Express 10, 1305-1313 (2002).
  21. M. Krause, H. Renner, and E. Brinkmeyer, "Analysis of Raman lasing characteristics in silicon-on-insulator waveguides," Opt. Express 12, 5703-5710 (2004). [CrossRef]
  22. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004). [CrossRef]
  23. H. Renner, M. Krause, and E. Brinkmeyer, "Maximal gain and optimal taper design for Raman amplifiers in silicon-on-insulator waveguides," in Integrated Photonics Research and Applications Topical Meetings (IPRA 2005), paper JWA3.
  24. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005). [CrossRef]
  25. M. Krause, H. Renner, and E. Brinkmeyer, "Efficiency increase of silicon-on-insulator Raman lasers by reduction of free-carrier absorption in tapered waveguides," in Conference on Lasers and Electro-Optics (CLEO 2005), paper CThB1.
  26. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Pannicia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef]
  27. O. Boyraz and B. Jalali, "Demonstration of directly modulated silicon Raman laser," Opt. Express 13, 796-800 (2005). [CrossRef]
  28. M. Krause, H. Renner, and E. Brinkmeyer, "Efficient Raman lasing in tapered silicon waveguides," Spectroscopy 21, 26-32 (2006).
  29. J. Zhang, Q. Lin, G. Piredd, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007). [CrossRef]
  30. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004). [CrossRef]
  31. L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007). [CrossRef]
  32. I-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, Jr., "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15249 (2007). [CrossRef]
  33. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. F¨orst, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 m femtosecond pulses," Opt. Express 14, 8336-8346 (2006). [CrossRef]
  34. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006). [CrossRef]
  35. D. J. Moss, L. Fu, I. Littler, and B. J. Eggleton, "Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides," IEEE Electron. Lett. 41, 320-321 (2005). [CrossRef]
  36. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, "Submicrosecond, submilliwatt, silicon-oninsulator thermooptic switch," IEEE Photon. Technol. Lett. 16, 2514-2516 (2004). [CrossRef]
  37. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. Tsang, "High speed logic gate using two-photon absorption in silicon waveguides," Opt. Commun. 265, 171-174 (2006). [CrossRef]
  38. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption, and self-phase modulation in silicon waveguides at 1.5 m wavelength," Appl. Phys. Lett. 80, 416-418 (2002). [CrossRef]
  39. T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. V. Thourhout, P. Dumon, R. Baets, and H. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005). [CrossRef]
  40. E. K. Tien, N. S. Yuksek, F. Qian, and O. Boyraz, "Pulse compression and modelocking by using TPA in silicon waveguides," Opt. Express 15, 6500-6506 (2007). [CrossRef]
  41. E. K. Tien, F. Qian, N. S. Yuksek, and O. Boyraz, "Influence of nonlinear loss competition on pulse compression and nonlinear optics in silicon," Appl. Phys. Lett. 91, 201115(1-3) (2007). [CrossRef]
  42. D. Dimitropoulos, B. Houshmand, R. Claps, and B. Jalali, "Coupled-mode theory of Raman effect in silicon-oninsulator waveguides," Opt. Lett. 28, 1954-1956 (2003). [CrossRef]
  43. V. M. N. Passaro and F. D. Leonardis, "Space-time modeling of Raman pulses in silicon-on-insulator optical waveguides," J. Lightwave Technol. 24, 2920-2931 (2006). [CrossRef]
  44. X. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006). [CrossRef]
  45. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express 15, 16604-16644 (2007). [CrossRef]
  46. L. Yin, Q. Lin, and G. P. Agrawal, "Dispersion tailoring and soliton propagation in silicon waveguides," Opt. Lett. 31, 1295-1297 (2006). [CrossRef]
  47. L. Yin and G. P. Agrawal, "Impact of two-photon absorption on self-phase modulation in silicon waveguides," Opt. Lett. 31, 1295-1297 (2006). [CrossRef]
  48. V. M. N. Passaro and F. D. Leonardis, "Solitons in SOI optical waveguides," Adv. Studies Theor. Phys. 2, 769-785 (2008).
  49. C. Dissanayake, I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, "Raman-mediated nonlinear interactions in silicon waveguides: Copropagating and counterpropagating pulses," IEEE Photon. Technol. Lett. 21, 1372-1374 (2009). [CrossRef]
  50. I. D. Rukhlenko, M. Premaratne, C. Dissanayake, and G. P. Agrawal, "Nonlinear pulse evolution in silicon waveguides: An approximate analytic approach," J. Lightwave Technol. 27, 3241-3248 (2009). [CrossRef]
  51. I. D. Rukhlenko, M. Premaratne, C. Dissanayake, and G. P. Agrawal, "Continuous-wave Raman amplification in silicon waveguides: Beyond the undepleted pump approximation," Opt. Lett. 34, 536-538 (2009). [CrossRef]
  52. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, "Nonlinear silicon photonics: Analytical tools," IEEE J. Sel. Top. Quantum Electron., in press.
  53. I. D. Rukhlenko, C. Dissanayake, M. Premaratne, and G. P. Agrawal, "Maximization of net optical gain in silicon-waveguide Raman amplifiers," Opt. Express 17, 5807-5814 (2009). [CrossRef]
  54. I. D. Rukhlenko, C. Dissanayake, M. Premaratne, and G. P. Agrawal, "Optimization of Raman amplification in silicon waveguides with finite facet reflectivities," IEEE J. Sel. Top. Quantum Electron., in press.
  55. S. Roy, S. K. Bhadra, and G. P. Agrawal, "Femtosecond pulse propagation in silicon waveguides: Variational approach and its advantages," Opt. Commun. 281, 5889-5893 (2008). [CrossRef]
  56. S. Roy, S. K. Bhadra, and G. P. Agrawal, "Raman amplification of optical pulses in silicon waveguides: effects of finite gain bandwidth, pulse width, and chirp," J. Opt. Soc. Am. B 26, 17-25 (2009). [CrossRef]
  57. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman scattering in silicon waveguides," Opt. Express 11, 1731-1739 (2003). [CrossRef]
  58. T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Sel. Top. Quantum Electron. 10, 1149-1153 (2004). [CrossRef]
  59. A. R. Cowan, G. W. Rieger, and J. F. Young, "Nonlinear transmission of 1.5 m pulses through single-mode silicon-on-insulator waveguide structures," Opt. Express 12, 1611-1621 (2004). [CrossRef]
  60. G.W. Rieger, K. S. Virk, and J. F. Yong, "Nonlinear propagation of ultrafast 1.5 m pulses in high-index-contrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004). [CrossRef]
  61. D. Dimitripoulos, R. Jhavery, R. Claps, J. C. S. Woo, and B. Jalali, "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides," Appl. Phys. Lett. 86, 071115(1-3) (2005).
  62. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous GVD in Si channel waveguides," Opt. Express 14, 4357-4362 (2006). [CrossRef]
  63. I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, and R. M. Osgood, Jr., "Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires," Opt. Express 15, 1135-1146 (2007). [CrossRef]
  64. I-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides," Opt. Express 14, 12380-12387 (2006). [CrossRef]
  65. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon on insulator photonic wires," Opt. Express 14, 3853-3863 (2006). [CrossRef]
  66. H. J. Eichler, T. Brand, M. Glotz, and B. Smandek, "Optical nonlinearity and bistability in silicon," Phys. Stat. Sol. B 150, 705-718 (1988). [CrossRef]
  67. V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004). [CrossRef]
  68. G. Priem, P. Dumon, W. Bogaerts, D. V. Thourhout, G. Morthier, and R. Baets, "Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures," Opt. Express 13, 9623-9628 (2005). [CrossRef]
  69. Q. Xu and M. Lipson, "Carrier-induced optical bistability in silicon ring resonators," Opt. Lett. 31, 341-343 (2006). [CrossRef]
  70. Q. Xu and M. Lipson, "All-optical logic based on silicon micro-ring resonators," Opt. Express 15, 924-929 (2007). [CrossRef]
  71. G. P. Agrawal, Applications of Nonliner Fiber Optics, 2nd ed. (Academic Press, Boston, 2008).
  72. R. W. Boyd, Nonlinear Optics (Academic, Boston, 2003).
  73. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, Boston, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited