OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22281–22295

Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CH n stretching vibrational region

Jae Yong Lee, Se-Hwa Kim, Dae Won Moon, and Eun Seong Lee  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22281-22295 (2009)
http://dx.doi.org/10.1364/OE.17.022281


View Full Text Article

Enhanced HTML    Acrobat PDF (1351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a three-color multiplex coherent anti-Stokes Raman scattering (CARS) setup that facilitates a prompt recording of broadband CARS spectra along with a fast CARS imaging. With separate narrowband Stokes and probe beams being introduced in the near IR, we are able to incorporate a stable, wideband Ti:sapphire femtosecond laser as a pump beam that covers the full range of Raman shift for CHn stretching vibrational modes. Experimentally, high-resolution multiplex CARS signals are allowed to investigate molecular vibrations over the range of 2650 cm-1–3050 cm-1, which are spectrally integrated to construct lipid-sensitive images. It is demonstrated that the proposed implementation promises a particular benefit on CARS imaging of lipid-rich tissue structures by providing detailed information on CHn Raman-active vibrations at points of interest on the CARS images that can be obtained at high frame rates.

© 2009 Optical Society of America

OCIS Codes
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Spectroscopy

History
Original Manuscript: October 7, 2009
Revised Manuscript: November 10, 2009
Manuscript Accepted: November 20, 2009
Published: November 23, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Jae Yong Lee, Se-Hwa Kim, Dae Won Moon, and Eun Seong Lee, "Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region," Opt. Express 17, 22281-22295 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22281


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibration imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999). [CrossRef]
  2. J.-X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, "Laser-scanning Coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002). [CrossRef] [PubMed]
  3. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005). [CrossRef] [PubMed]
  4. T. Hellerer, C. Ax¨ang, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, "Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy," Proc. Natl. Acad. Sci. USA 104, 14658-14663 (2007). [CrossRef] [PubMed]
  5. H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, "Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering," J. Biomed. Opt. 11, 050502 (2006). [CrossRef] [PubMed]
  6. A. H. Chau, J. T. Motz, J. A. Gardecki, S. Waxman, B. E. Bouma, and G. J. Terney "Fingerprint and highwavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo," J. Biomed. Opt. 13, 040501 (2008). [CrossRef] [PubMed]
  7. M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002). [CrossRef]
  8. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106, 8493-8498 (2002). [CrossRef]
  9. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
  10. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, "Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared," Opt. Lett. 33, 923-925 (2008). [CrossRef] [PubMed]
  11. T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29, 2701-2703 (2004). [CrossRef] [PubMed]
  12. H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 13, 1322-1327 (2005). [CrossRef] [PubMed]
  13. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, "Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths," Opt. Express 15, 4848-4856 (2007). [CrossRef]
  14. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, "Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift," Opt. Lett. 31, 1328-1330 (2006). [CrossRef] [PubMed]
  15. C. Heinrich, A. Hofer, A. Ritsch, C. Ciardi, S. Bernet, and M. Ritsch-Marte, "Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy," Opt. Express 16, 2699-2708 (2008). [CrossRef] [PubMed]
  16. G. Socrates, Infrared and Raman characteristic group frequencies, 3rd/ed., (John Wiley & Sons, New York, 2001), Chap. 23.
  17. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, "Optimizing the laser-pulse configuration for coherent Raman spectroscopy," Science 316, 265-268 (2007). [CrossRef] [PubMed]
  18. Y. J. Lee, Y. Liu, and M. T. Cicerone, "Characterization of three-color CARS in a two-color broadband CARS spectrum," Opt. Lett. 32, 3370-3372 (2007). [CrossRef] [PubMed]
  19. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006). [CrossRef] [PubMed]
  20. N. Dudovich, D. Oron, and Y. Siberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002). [CrossRef] [PubMed]
  21. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Narrow-band coherent anti-Stokes Raman signals from broad-band pulses," Phys. Rev. Lett. 88, 063004 (2002). [CrossRef] [PubMed]
  22. S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, "Application of spectral phase shaping to high resolution CARS spectroscopy," Opt. Express 16, 7985-7996 (2008). [CrossRef] [PubMed]
  23. Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006). [CrossRef]
  24. T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, "Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy," J. Biomed. Opt. 12, 054007 (2007). [CrossRef] [PubMed]
  25. H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, "Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy," Arterioscler. Thromb. Vasc. Biol. 29, 1342-1348 (2009). [CrossRef] [PubMed]
  26. D. M. Small, "George Lyman Duff memorial lecture - Progression and regression of atherosclerotic lesions: Insights from lipid physical biochemistry," Arterioscler. Thromb. Vasc. Biol. 8, 103-129 (1988). [CrossRef]
  27. B. Lundberg B, "Chemical composition and physical state of lipid deposits ina therosclerosis," Atherosclerosis 56, 93-110(1985). [CrossRef] [PubMed]
  28. R. Virmani, a. P. Burke, A. Farb, and F. D. Kolodgie, "Pathology of the vulnerable plaque," J. Am. Coll. Cardiol. 47(C), C13-18 (2006). [CrossRef]
  29. G. S. Abela and K. Aziz, "Cholesterol crystals cause mechanical damage to biological membranes: a proposed mechanism of plaque rupture and erosion leading to arterial thrombosis," Clin. Cardiol. 28, 413-420 (2005). [CrossRef] [PubMed]
  30. R. K. Tangirala, W. G. Jerome, N. L. Jones, D. M. Small, W. J. Johnson, J. M. Glick, F. H. Mahlberg, and G. H. Rothblat, "Formation of cholesterol monohydrate crystals in macrophage-derived foam cells," J. Lipid Res. 35, 93-104 (1994). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited