OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22452–22461

Epitaxial quantum dots in stretchable optical microcavities

Tim Zander, Andreas Herklotz, Suwit Kiravittaya, Mohamed Benyoucef, Fei Ding, Paola Atkinson, Santosh Kumar, Johannes D. Plumhof, Kathrin Dörr, Armando Rastelli, and Oliver G. Schmidt  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22452-22461 (2009)
http://dx.doi.org/10.1364/OE.17.022452


View Full Text Article

Enhanced HTML    Acrobat PDF (737 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Arrays of GaAs microring optical resonators with embedded InGaAs quantum dots (QDs) are placed on top of Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric actuators, which allow the microcavities to be reversibly “stretched” or “squeezed” by applying relatively large biaxial stresses at low temperatures. The emission energy of both QDs and optical modes red- or blue- shift depending on the strain sign, with the QD emission shifting more rapidly than the optical mode with applied strain. The QD energy shifts are used to estimate the strain in the structures based on linear deformation potential theory and the finite element method. The shift of the modes is attributed to both the physical deformation and the change in refractive index due to the photoelastic effect. Remarkably, excitonic emissions from different QDs are observed to shift at different rates, implying that this technique can be used to bring spatially separated excitons into resonance.

© 2009 OSA

OCIS Codes
(160.2260) Materials : Ferroelectrics
(270.5580) Quantum optics : Quantum electrodynamics
(140.3945) Lasers and laser optics : Microcavities
(140.3948) Lasers and laser optics : Microcavity devices
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 30, 2009
Revised Manuscript: October 30, 2009
Manuscript Accepted: October 30, 2009
Published: November 23, 2009

Citation
Tim Zander, Andreas Herklotz, Suwit Kiravittaya, Mohamed Benyoucef, Fei Ding, Paola Atkinson, Santosh Kumar, Johannes D. Plumhof, Kathrin Dörr, Armando Rastelli, and Oliver G. Schmidt, "Epitaxial quantum dots in stretchable optical microcavities," Opt. Express 17, 22452-22461 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22452


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998). [CrossRef]
  2. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef] [PubMed]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]
  4. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]
  5. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77(2), 184–186 (2000). [CrossRef]
  6. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett . 95, 067401- (2005). [CrossRef] [PubMed]
  7. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007). [CrossRef] [PubMed]
  8. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot,” Appl. Phys. Lett. 93(15), 151109 (2008). [CrossRef]
  9. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000). [CrossRef] [PubMed]
  10. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008). [CrossRef] [PubMed]
  11. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008). [CrossRef] [PubMed]
  12. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005). [CrossRef] [PubMed]
  13. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005). [CrossRef]
  14. X. D. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett . 91, 161114–1-3 (2007). [CrossRef]
  15. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008). [CrossRef]
  16. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006). [CrossRef]
  17. A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009). [CrossRef]
  18. A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. M. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90(21), 213110 (2007). [CrossRef]
  19. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005). [CrossRef]
  20. A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, “In situ laser microprocessing of single self-assembled quantum dots and optical microcavities,” Appl. Phys. Lett. 90(7), 073120 (2007). [CrossRef]
  21. F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdre, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78,041401(R) (2008). [CrossRef]
  22. S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, “Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube,” Phys. Rev. B 78(3), 035317 (2008). [CrossRef]
  23. C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16(19), 15006–15012 (2008). [CrossRef] [PubMed]
  24. A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006). [CrossRef]
  25. C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3-PMN-PT(001) (A=Sr,Ca),” Phys. Rev. B 75(5), 054408 (2007). [CrossRef]
  26. S. E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82(4), 1804–1811 (1997). [CrossRef]
  27. J. P. Han and W. W. Cao, “Electric field effects on the phase transitions in [001]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals with compositions near the morphotropic phase boundary,” Phys. Rev. B 68(13), 134102 (2003). [CrossRef]
  28. S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006). [CrossRef]
  29. M. R. Brozel, and G. E. Stillman, eds., Properties of Gallium Arsenide (INSPEC: London, 1996)
  30. M. Fukuhara and A. Sampei, “Low-temperature elastic moduli and internal dilational and shear friction of polymethyl methacrylate,” J. Polym. Sci. B 33(12), 1847–1850 (1995). [CrossRef]
  31. H. J. McSkimin, “Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica,” J. Appl. Phys. 24(8), 988–997 (1953). [CrossRef]
  32. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004). [CrossRef]
  33. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002). [CrossRef] [PubMed]
  34. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967). [CrossRef]
  35. M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and S. Manus, “Low temperature in-situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Appl. Phys. Lett. 83(25), 5235–5237 (2003). [CrossRef]
  36. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 3 Fig. 2
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited