OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22505–22513

Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity

Takasumi Tanabe, Katsuhiko Nishiguchi, Eiichi Kuramochi, and Masaya Notomi  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22505-22513 (2009)
http://dx.doi.org/10.1364/OE.17.022505


View Full Text Article

Enhanced HTML    Acrobat PDF (355 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have fabricated high-Q photonic crystal nanocavities with a lateral p-i-n structure to demonstrate low-power and high-speed electro-optic modulation in a silicon chip. GHz operation is demonstrated at a very low (μW level) operating power, which is about 4.6 times lower than that reported for other cavities in silicon. This low-power operation is due to the small size and high-Q of the photonic crystal nanocavity.

© 2009 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: August 24, 2009
Revised Manuscript: November 4, 2009
Manuscript Accepted: November 4, 2009
Published: November 24, 2009

Citation
Takasumi Tanabe, Katsuhiko Nishiguchi, Eiichi Kuramochi, and Masaya Notomi, "Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity," Opt. Express 17, 22505-22513 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22505


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  2. S. Itabashi, H. Fukuda, T. Tsuchizawa, T. Watanabe, and K. Yamada, “Silicon wire waveguides and silicon microphotonic devices,” NTT Technical Review 4, 48–56 (2006).
  3. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005). [CrossRef]
  4. T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007). [CrossRef]
  5. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-19-2575 . [CrossRef] [PubMed]
  6. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-3-341 . [CrossRef] [PubMed]
  7. M. Slojačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phy Rev. E 66, 055601 (2002). [CrossRef]
  8. K. Nozaki and T. Baba, “Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers,” Appl. Phys. Lett. 88, 211101 (2006). [CrossRef]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  10. K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in Proceeding of IEEE Conference on 4th Group IV Photonics, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 116–118.
  11. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6851 . [CrossRef] [PubMed]
  12. C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. Sleboda, “A 40Gb silicon photonics transceiver,” Proc. SPIE 6477, 64770N (2007). [CrossRef]
  13. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3140 . [CrossRef] [PubMed]
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  15. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007). [CrossRef]
  16. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  17. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  18. L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of p-i-n-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008). [CrossRef]
  19. T. Hodson, B. Miao, C. Chen, A. Sharkawy, and D. W. Prather, “Silicon based photonic crystal electro-optic modulator utilizing the plasma dispersion effect,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), CThG7.
  20. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-15-670 . [PubMed]
  21. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009). [CrossRef] [PubMed]
  22. J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009). [CrossRef]
  23. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008). [CrossRef]
  24. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  25. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26(11), 1396–1403 (2008). [CrossRef]
  26. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-430 . [CrossRef] [PubMed]
  27. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-660 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited