OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22535–22542

Polarization-dependent GaN surface grating reflector for short wavelength applications

Joonhee Lee, Sungmo Ahn, Hojun Chang, Jaehoon Kim, Yeonsang Park, and Heonsu Jeon  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22535-22542 (2009)
http://dx.doi.org/10.1364/OE.17.022535


View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study proposes a one-dimensional sub-wavelength grating structure on GaN surface which behaves as a reflector for transverse-electric polarized light in the blue wavelength range. The rigorous coupled-wave analysis method was used to analyze the effects of various structural parameters on the reflectance spectra of the grating. Based on the optimal design, a GaN surface grating reflector (SGR) was fabricated using holographic lithography and dry etching processes. It showed reflectance that exceeded 90% over a 60-nm bandwidth. The obtained experimental results were in good agreement with simulated ones. The SGR has an advantage of structural simplicity, which should greatly facilitate the fabrication and integration of high reflectors on GaN-based short-wavelength photonic devices.

© 2009 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.1970) Holography : Diffractive optics
(160.6000) Materials : Semiconductor materials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 21, 2009
Revised Manuscript: November 12, 2009
Manuscript Accepted: November 16, 2009
Published: November 24, 2009

Citation
Joonhee Lee, Sungmo Ahn, Hojun Chang, Jaehoon Kim, Yeonsang Park, and Heonsu Jeon, "Polarization-dependent GaN surface grating reflector for short wavelength applications," Opt. Express 17, 22535-22542 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22535


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Huang, T. Lu, H. Yao, H. Kuo, S. Wang, C. Lin, and L. Chang, “Crack-free GaN/AlN distributed Bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88(6), 061904 (2006). [CrossRef]
  2. S. Park, J. Kim, H. Jeon, T. Sakong, S. Lee, S. Chae, Y. Park, C. Jeong, G. Yeom, and Y. Cho, “Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme,” Appl. Phys. Lett. 83(11), 2121–2123 (2003). [CrossRef]
  3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007). [CrossRef]
  4. J. Kim, D. Kim, J. Lee, H. Jeon, Y. Park, and Y. Choi, “AlGaN membrane grating reflector,” Appl. Phys. Lett. 95(2), 021102 (2009). [CrossRef]
  5. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photon. Technol. Lett. 10(9), 1205–1207 (1998). [CrossRef]
  6. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]
  7. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  8. E. Bisaillon, D. Tan, B. Faraji, A. Kirk, L. Chrowstowski, and D. V. Plant, “High reflectivity air-bridge subwavelength grating reflector and Fabry-Perot cavity in AlGaAs/GaAs,” Opt. Express 14(7), 2573–2582 (2006). [CrossRef] [PubMed]
  9. Y. Ding and R. Magnusson, “Band gaps and leaky-wave effects in resonant photonic-crystal waveguides,” Opt. Express 15(2), 680–694 (2007). [CrossRef] [PubMed]
  10. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007). [CrossRef] [PubMed]
  11. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008). [CrossRef] [PubMed]
  12. M. Bass and Optical Society of America, Handbook of optics, 2nd ed. (McGraw-Hill, New York, 1995).
  13. R. Wood, “On a remarkable case of uneven distribution of light in diffraction grating problems,” Philos. Mag. 4, 396–402 (1902).
  14. L. Rayleigh, “Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14, 60–65 (1907).
  15. E. Popov, M. Neviere, B. Gralak, and G. Tayeb, “Staircase approximation validity for arbitrary-shaped gratings,” J. Opt. Soc. Am. A 19(1), 33–42 (2002). [CrossRef]
  16. C.-O. Cho, J. Jeong, J. Lee, H. Jeon, I. Kim, D. Jang, Y. Park, and J. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87(16), 161102 (2005). [CrossRef]
  17. C.-O. Cho, J. Lee, Y. Park, Y. Roh, H. Jeon, and I. Kim, “Photonic Crystal Cavity Lasers Patterned by a Combination of Holography and Photolithography,” IEEE Photon. Technol. Lett. 19(8), 556–558 (2007). [CrossRef]
  18. J. Lee, S. Ahn, S. Kim, D. U. Kim, H. Jeon, S. J. Lee, and J. H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett. 94(10), 101105 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited