OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22689–22703

Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity

Murray W. McCutcheon, Darrick E. Chang, Yinan Zhang, Mikhail D. Lukin, and Marko Lončar  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22689-22703 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (470 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Much recent effort has focused on coupling individual quantum emitters to optical microcavities in order to produce single photons on demand, enable single-photon optical switching, and implement functional nodes of a quantum network. Techniques to control the bandwidth and frequency of the outgoing single photons are of practical importance, allowing direct emission into telecommunications wavelengths and “hybrid” quantum networks incorporating different emitters. Here, we describe an integrated approach involving a quantum emitter coupled to a nonlinear optical resonator, in which the emission wavelength and pulse shape are controlled using the intra-cavity nonlinearity. Our scheme is general in nature, and demonstrates how the photonic environment of a quantum emitter can be tailored to determine the emission properties. As specific examples, we discuss a high Q-factor, TE-TM double-mode photonic crystal cavity design that allows for direct generation of single photons at telecom wavelengths (1425 nm) starting from an InAs/GaAs quantum dot with a 950 nm transition wavelength, and a scheme for direct optical coupling between such a quantum dot and a diamond nitrogen-vacancy center at 637 nm.

© 2009 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(270.5580) Quantum optics : Quantum electrodynamics
(230.5298) Optical devices : Photonic crystals
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: October 21, 2009
Revised Manuscript: November 20, 2009
Manuscript Accepted: November 23, 2009
Published: November 25, 2009

Murray W. McCutcheon, Darrick E. Chang, Yinan Zhang, Mikhail D. Lukin, and Marko Loncar, "Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity," Opt. Express 17, 22689-22703 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Michler, A. Kiraz, C. Becher,W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A Quantum Dot Single-Photon Turnstile Device," Science 290(5500), 2282-2285 (2000). [CrossRef]
  2. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89(23), 233602 (2002). [CrossRef]
  3. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, "Deterministic Generation of Single Photons from One Atom Trapped in a Cavity," Science 303(5666), 1992-1994 (2004). [CrossRef]
  4. L.-M. Duan and H. J. Kimble, "Scalable Photonic Quantum Computation through Cavity-Assisted Interactions," Phys. Rev. Lett. 92(12), 127902 (2004). [CrossRef]
  5. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005). [CrossRef] [PubMed]
  6. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum state transfer and entanglement distribution among distant nodes in a quantum network," Phys. Rev. Lett. 78, 3221-3224 (1997). [CrossRef]
  7. H. J. Kimble, "The quantum internet," Nature 453, 1023-1030 (2008). [CrossRef] [PubMed]
  8. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum register based on individual electronic and nuclear spin qubits in diamond," Science 3161312-1316 (2007). [CrossRef]
  9. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, "Coherent population trapping of single spins in diamond under optical excitation," Phys. Rev. Lett. 97, 247401 (2006). [CrossRef]
  10. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wachtrup, "Room-temperature coherent coupling of single spins in diamond," Nat. Phys. 2, 408-413 (2006). [CrossRef]
  11. R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, "Polarization and readout of coupled single spins in diamond," Phys. Rev. Lett. 97, 087601 (2006). [CrossRef] [PubMed]
  12. K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled microdiskquantum dot system," Nature 450, 862-865 (2007). [CrossRef] [PubMed]
  13. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature,  445, 896-899 (2007). [CrossRef] [PubMed]
  14. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J . Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature,  450, 857-861 (2007). [CrossRef] [PubMed]
  15. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," Phys. Rev. Lett. 86(5), 783-786 (2001). [CrossRef]
  16. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using stored light pulses," Nature 409, 490-493 (2001). [CrossRef] [PubMed]
  17. Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Lončar, "Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities," Opt. Lett. 34, 2694-2696 (2009). [CrossRef] [PubMed]
  18. M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007). [CrossRef]
  19. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, "χ (2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities," Opt. Express 15, 7303-7318 (2007). [CrossRef] [PubMed]
  20. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, "Enhanced nonlinear optics in photonic-crystal microcavities," Opt. Express 15, 16161-16176 (2007). [CrossRef] [PubMed]
  21. M. Liscidini and L. C. Andreani, "Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors," Phys. Rev. E 73, 016613 (2006). [CrossRef]
  22. A. R. Cowan and J. F. Young, "Nonlinear optics in high refractive index contrast periodic structures," Semicond. Sci. Technol. 20, R41-R56 (2005). [CrossRef]
  23. M.W. McCutcheon, G.W. Rieger, J. F. Young, D. Dalacu, P. J. Poole, and R. L. Williams, "All-optical conditional logic with a nonlinear photonic crystal nanocavity," Appl. Phys. Lett. 95, 0910.0041(2009). [CrossRef]
  24. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).
  25. M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, "Electromagnetically induced transparency with tunable single-photon pulses," Nature 438, 837-841 (2005.) [CrossRef] [PubMed]
  26. A. P. VanDevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51, 1433-1445 (2004).
  27. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled linbo3 waveguides," Opt. Lett. 30(13), 1725-1727 (2005). [CrossRef]
  28. S. Tanzilli,W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437116-120 (2005). [CrossRef] [PubMed]
  29. A. P. VanDevender and P. G. Kwiat, "Quantum transduction via frequency upconversion (invited)," J. Opt. Soc. Am. B 24(2), 295-299 (2007). [CrossRef]
  30. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, "Coherent population trapping of an electron spin in a single negatively charged quantum dot," Nat. Phys. 4, 692-695 (2008). [CrossRef]
  31. A. V. Gorshkov, A. A., M. Fleischhauer, A. S. Sørensen, and M. D. Lukin, "Universal approach to optimal photon storage in atomic media," Phys. Rev. Lett. 98(12), 123601 (2007). [CrossRef]
  32. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  33. S. Combrie, A. De Rossi, Q. V. Tran, and H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm," Opt. Lett. 33, 1908-1910 (2008). [CrossRef] [PubMed]
  34. R. Herrmann, T. S unner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006). [CrossRef] [PubMed]
  35. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities," Opt. Express 13, 245-255 (2005). [CrossRef] [PubMed]
  36. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De la Rue, "Ultra high Quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Express 16, 12084-12089 (2008). [CrossRef] [PubMed]
  37. M. W. McCutcheon and M. Loncar, "Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19136-19145 (2008). [CrossRef]
  38. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008). [CrossRef] [PubMed]
  39. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity," Opt. Express 17, 3802-3817 (2009). [CrossRef] [PubMed]
  40. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]
  41. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30, 3042-3044 (2005). [CrossRef] [PubMed]
  42. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram and nanometer scale photonic crystal opto-mechanical cavity," Nature 459, 550-556 (2009). [CrossRef] [PubMed]
  43. M. E. Reimer, D. Dalacu, J. Lapointe, P. J. Poole, D. Kim, G. C. Aers, W. R. McKinnon, and R. L. Williams, "Single electron charging in deterministically positioned InAs/InP quantum dots," Appl. Phys. Lett. 94, 011108 (2009). [CrossRef]
  44. E. H. Sargent, "Infrared quantum dots," Adv. Mat. 17515-522 (2005). [CrossRef]
  45. M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, "Electrically driven telecommunication wavelength single-photon source," Appl. Phys. Lett. 90, 063512 (2007). [CrossRef]
  46. T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, and Y. Arakawa, "First demonstration of electrically driven 1.55 μm single-photon generator," Jap. J. Appl. Phys. 472880-2883 (2008). [CrossRef]
  47. E. D. Palik, Handbook of optical constants of solids Vol. 1. (Academic Press, Inc., 1985).
  48. Handbook of Laser Science and Technology, Vol. III: Optical Materials, Part I, chapter Non-linear optical materials, (CRC Press, 1986).
  49. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268-2294 (1997). [CrossRef]
  50. R. C. Stoneman and L. Esterowitz, "Efficient resonantly pumped 2.8-m er3+:gsgg laser," Opt. Lett. 17, 816-818 (1992). [CrossRef] [PubMed]
  51. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000). [CrossRef] [PubMed]
  52. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201112 (2007). [CrossRef]
  53. P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, "Chip-based microcavities coupled to nitrogenvacancy centers in single crystal diamond," Appl. Phys. Lett. 95, 191115 (2009). [CrossRef]
  54. P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, "Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers," Opt. Express 17, 9588-9601 (2009). [CrossRef] [PubMed]
  55. K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, "Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide," Appl. Phys. Lett. 93, 234107 (2008). [CrossRef]
  56. K. Rivoire, A. Faraon, and J. Vuckovic, "Gallium phosphide photonic crystal nanocavities in the visible," Appl. Phys. Lett. 93, 063103 (2008). [CrossRef]
  57. P. E. Barclay, C. Santori, K.-M. C. Fu, R. G. Beausoleil, and O. Painter, "Coherent interference effects in a nano-assembled diamond NV center cavity-QED system," Opt. Express 17, 8081-8097 (2009). [CrossRef] [PubMed]
  58. M. Barth, N. Nusse, B. Lochel, and O. Benson, "Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity," Opt. Lett. 34, 1108-1110 (2009). [CrossRef] [PubMed]
  59. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, "Coupled photonic crystal nanobeam cavities," Appl. Phys. Lett. 95, 031102 (2009). [CrossRef]
  60. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, "Dynamically reconfigurable photonic crystal nanobeam cavities," arxiv:0909.2278v1 Phys. Opt. (2009).
  61. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 13, 801 (2005).
  62. C. Cabrillo, J. I. Cirac, P. Garcıa-Fernandez, and P. Zoller, "Creation of entangled states of distant atoms by interference," Phys. Rev. A 59(2), 1025-1033 (1999). [CrossRef]
  63. S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, "Proposal for Teleportation of an Atomic State via Cavity Decay," Phys. Rev. Lett.  83, (24)5158-5161 (1999). [CrossRef]
  64. L.-M. Duan and H. J. Kimble, "Efficient Engineering of Multiatom Entanglement through Single-Photon Detections," Phys. Rev. Lett. 90(25), 253601 (2003). [CrossRef]
  65. A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67(6), 661-663 (1991). [CrossRef]
  66. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited