OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22726–22734

Modulation of evanescent focus by localized surface plasmons waveguide

Xingyu Gao and Xiaosong Gan  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 22726-22734 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (721 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present the modulation of a tightly focused evanescent field by a nano-plasmonic waveguide, which consists of two silver nanorods lying on the interface of two dielectric media. Linearly polarized and radially polarized illuminating beams are investigated under the influence of localized surface plasmons effect. It is demonstrated that different polarization components of the tightly focused evanescent field can be modulated accordingly. The results obtained from the finite difference time domain simulation show that super-resolved focal spot can be achieved using the nano-plasmonic waveguide structure.

© 2009 OSA

ToC Category:
Optics at Surfaces

Original Manuscript: July 16, 2009
Revised Manuscript: November 3, 2009
Manuscript Accepted: November 5, 2009
Published: November 30, 2009

Xingyu Gao and Xiaosong Gan, "Modulation of evanescent focus by localized surface plasmons waveguide," Opt. Express 17, 22726-22734 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Stefan Alexander Maier, Plasmonics Fundamentals and Applications. (Springer, New York, 2007).
  2. Y. F. Chau, M. W. Chen, and D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Appl. Opt. 48(3), 617–622 (2009). [CrossRef] [PubMed]
  3. Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46(3), 039701 (2007). [CrossRef]
  4. T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowire,” Appl. Phys. Lett. 89(23), 233119 (2006). [CrossRef]
  5. J. Z. Zhang and C. Noguez, “Plasmonic Optical Properties and Applications of Metal Nanostructures,” Plasmonics 3(4), 127–150 (2008). [CrossRef]
  6. J. Shibayama, R. Takahashi, J. Yamauchi, and H. Nakano, “Frequency-Dependent Locally One-Dimensional FDTD Implementation with a Combined Dispersion Model for the Analysis of Surface Plasmon Waveguides,” IEEE Photon. Technol. Lett. 20(10), 824–826 (2008). [CrossRef]
  7. J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh, “Hybrid-effect transmission enhancement induced by oblique illumination in nano-ridge waveguide,” Opt. Express 15(18), 11741–11749 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11741 . [CrossRef] [PubMed]
  8. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005). [CrossRef] [PubMed]
  9. W. M. Saj, “Light focusing with tip formed array of plasmon-polariton waveguides,” Proc. SPIE 6641, 664120 (2007). [CrossRef]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  11. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998). [CrossRef]
  12. Z. Zhu, M. G. Somekh, and M. P. Steven, “Behavior of localized surface plasmon near focus,” Opt. Commun. 207(1-6), 113–119 (2002). [CrossRef]
  13. B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005). [CrossRef]
  14. Baohua Jia, Xiaosong Gan, and Min Gu. “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821–6827. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6821
  15. B. Jia, X. Gan, and M. Gu, “Height/width aspect ratio controllable two-dimensional sub-micron arrays fabricated with two-photon photopolymerization,” Optik (Stuttg.) 115(8), 358–362 (2004). [CrossRef]
  16. A. Husakou and J. Herrmann, “Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer,” Opt. Express 14(23), 11194–11203 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11194 . [CrossRef] [PubMed]
  17. A. Husakou and J. Herrmann, “Focusing of scanning light beams below the diffraction limit without near-field spatial control using a saturable absorber and a negative-refraction material,” Phys. Rev. Lett. 96(1), 013902 (2006). [CrossRef] [PubMed]
  18. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed (Artech House, Norwood, MA, 2005).
  19. M. Gu, Advanced Optical Imaging Theory(Springer, Heidelberg, 1999).
  20. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  21. W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “An FDTD method for the simulation of dispersive metallic structures,” Opt. Quantum Electron. 38(9-11), 843–856 (2007). [CrossRef]
  22. R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma,” IEEE Trans. Antenn. Propag. 39(1), 29–34 (1991). [CrossRef]
  23. D. M. Sullivan, Electromagenetic Simulation Using the FDTD Method(IEEE Press, New York, 2000).
  24. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/abstract.cfm?uri=oe-10-7-324 . [PubMed]
  25. J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43(5), 1063–1071 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited