OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22879–22889

Multiplex coherent anti-Stokes Raman scattering (MCARS) for chemically sensitive, label-free flow cytometry

Charles H. Camp Jr., Siva Yegnanarayanan, Ali A. Eftekhar, Hamsa Sridhar, and Ali Adibi  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22879-22889 (2009)
http://dx.doi.org/10.1364/OE.17.022879


View Full Text Article

Enhanced HTML    Acrobat PDF (419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Flow cytometry is an ever-advancing high-throughput multivariate analysis tool that natively provides size and morphological information. To obtain molecular information, however, typically requires the addition of fluorophores, which are limited by spectral overlap, nonspecific binding, available conjugation chemistries, and cellular toxicity. A complementary or alternative, label-free approach to molecular information is through multiplex coherent anti-Stokes Raman scattering (MCARS), which is a coherent, nonlinear optical method that provides a wealth of molecular information by probing the Raman energies within a molecule. In this work, we demonstrate the unique capability of our MCARS flow cytometer to distinguish flowing particles and discuss system performance capabilities and possibilities.

© 2009 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 19, 2009
Revised Manuscript: November 13, 2009
Manuscript Accepted: November 20, 2009
Published: November 30, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Charles H. Camp, Siva Yegnanarayanan, Ali A. Eftekhar, Hamsa Sridhar, and Ali Adibi, "Multiplex coherent anti-Stokes Raman scattering (MCARS) for chemically sensitive, label-free flow cytometry," Opt. Express 17, 22879-22889 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22879


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. H. Coulter, "High speed automatic blood cell counter and analyzer," inProceedings of the National Electronics Conference,  12, 1034-1040 (1956).
  2. H. M. Shapiro, Practical Flow Cytometry, 4th ed. (Wiley Liss, New York, 2003).
  3. M. G. Macey, "Principles of flow cytometry," in Flow Cytometry: Principles and Applications, M. G. Macey, ed. (Humana, Totowa, New Jersey, 2007), pp. 1-15.
  4. N. Baumgarth and M. Roederer, "A practical approach to multicolor flow cytometry for immunophenotyping," J. Immunological Methods 243, 77-97 (2000). [CrossRef]
  5. D. A. McCarthy, "Fluorochromes and fluorescence," in Flow Cytometry: Principles and Applications, M. G. Macey, ed. (Humana, Totowa, New Jersey, 2007), pp. 59-112.
  6. Z. Darzynkiewicz, M. Roederer, and H. J. Tanke, eds., Cytometry, 4th Edition: New Developments, 4th ed., 75, (Elsevier Academic, San Diego, Calif., 2004).
  7. A. D. Michelson, "Flow cytometry: a clinical test of platelet function," Blood 87, 4925-4936 (1996). [PubMed]
  8. M. Roederer, "Spectral Compensation for Flow Cytometry: Visualization Artifacts, Limitations, and Caveats," Cytometry 45, 194-205 (2001). [CrossRef] [PubMed]
  9. G. Goddard, J. C. Martin, M. Naivar, P. M. Goodwin, S. W. Graves, R. Habbersett, J. P. Nolan, and J. H. Jett, "Single particle high resolution spectral analysis flow cytometry," Cytometry Part A 69A, 842-851 (2006). [CrossRef]
  10. D. A. Watson, L. O. Brown, D. F. Gaskill, M. Naivar, S. W. Graves, S. K. Doorn, and J. P. Nolan. "A flow cytometer for the measurement of Raman spectra," Cytometry Part A 73A, 119-128 (2008). [CrossRef]
  11. A. Y. Lau, L. P. Leeb, and J.W. Chan, "An integrated optofluidic platform for Raman-activated cell sorting," Lab on a Chip 8, 1116-1120 (2008). [CrossRef] [PubMed]
  12. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, "Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells," Biophys. J. 90, 648-656 (2006). [CrossRef]
  13. J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002). [CrossRef]
  14. C. L. Evans and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine," Annu. Rev. Anal. Chem. 1, 883-909 (2008). [CrossRef]
  15. H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 13, 1322-1327 (2005). [CrossRef] [PubMed]
  16. H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. M¨uller, "Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering," J. Biomed. Opt. 11, 050502(2006). [CrossRef] [PubMed]
  17. C. L. Evans, E. O. Potma, M. Puorishaag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," PNAS 102, 16807-16812 (2005). [CrossRef] [PubMed]
  18. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001). [CrossRef]
  19. H. Kano, "Molecular vibrational imaging of a human cell by multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum light source," J. Raman Spectrosc. 39, 1649-1652 (2008). [CrossRef]
  20. H. W. Wang, N. Bao, T. T. Le, C. Lu, and J. X. Cheng, "Microfluidic CARS cytometry," Opt. Express 16, 5782-5789 (2008). [CrossRef] [PubMed]
  21. M. M¨uller and J. M. Schins, "Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy," J. Phys. Chem. B,  106, 3715-3723 (2002). [CrossRef]
  22. G.W. H. Wurpel, J. M. Schins, and M. M¨uller, "Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 27, 1093-1095 (2002). [CrossRef]
  23. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles," J. Phys. Chem. B 106, 8493-8498 (2002). [CrossRef]
  24. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett.,  28, 1123-1125 (2003). [CrossRef] [PubMed]
  25. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, R. J. Saykally, "High spectral resolution multiplex CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387, 436-441 (2004). [CrossRef]
  26. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, "Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers," J. Opt. Soc. Am. B 221934-1938 (2005). [CrossRef]
  27. D. Schafer, J. A. Squier, J. van Maarseveen, D. Bonn, M. Bonn, and M. Müller, "In situ quantitative measurement of concentration profiles in a microreactor with submicron resolution using multiplex CARS microscopy," J. Am. Chem. Soc. 130, 11592-11593 (2008). [CrossRef] [PubMed]
  28. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901 (2002). [CrossRef] [PubMed]
  29. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  30. C. H. CampJr., A. A. Eftekhar, and A. Adibi, "Single-source interferometric multiplex coherent anti-Stokes Raman scattering with a photonic crystal fiber light source," Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, May 4-9, 2008.
  31. T. M. Squires and S. R. Quake, "Microfluidics: fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977-1026 (2005). [CrossRef]
  32. G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, 368-373 (2006). [CrossRef] [PubMed]
  33. R. M. Waxler, D. Horowitz, and A. Feldman, "Optical and physical parameters of Plexiglas 55 and Lexan," Appl. Opt. 18, 101-104 (1979). [CrossRef] [PubMed]
  34. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003). [CrossRef]
  35. M. L. Shuler, R. Aris, and H. M. Tsuchiya, "Hydrodynamic focusing and electronic cell-sizing techniques," Appl. Microbiol.,  24, 384-388 (1972). [PubMed]
  36. K. Pearson, "On lines and planes of closest fit to systems of points in space," Philosoph. Mag. 2, 559-572 (1901).
  37. J. X. Cheng and X. S. Xie, "Coherent Anti-Stokes Raman Scattering Microscopy:Instrumentation, Theory, and Applications," J. Phys. Chem. B 108, 827-840 (2004). [CrossRef]
  38. Newport Corporation, "Oriel InstaSpec X CCD," http://www.newport.com/store/genproductaspx?id=415018.
  39. Andor Technology plc, "Andor Newton 970 EMCCD Camera," http://www.andor.com/scientific$_$cameras/newton/models/defaultaspxProductCodeID=48.
  40. Princeton Instruments, "PIXIS - CCD (spectroscopy Version)," http://www.princetoninstruments.com/products/speccam/pixis/.
  41. J. W. Bales, "Ultra-high-speed imaging: High-speed and ultra-high-speed imaging offers broad application coverage," Laser Focus World, http://www.laserfocusworld.com/articles/282677.
  42. Cordin Scientific Imaging, "Rotating mirror cameras," http://www.cordin.com/productsrm.html.
  43. Massachusetts Institute of Technology, "The Edgerton Center: High Speed Imaging Links," http://web. mit.edu/Edgerton/www/HSILinks.html.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (391 KB)     
» Media 2: MOV (441 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited