OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23169–23180

Numerical comparison between conventional dispersion compensating fibers and photonic crystal fibers as lumped Raman amplifiers

C. E. S. Castellani, S. P. N. Cani, M. E. V. Segatto, M. J. Pontes, and M. A. Romero  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 23169-23180 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems.

© 2009 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 12, 2009
Revised Manuscript: November 15, 2009
Manuscript Accepted: November 15, 2009
Published: December 3, 2009

C. E. S. Castellani, S. P. N. Cani, M. E. V. Segatto, M. J. Pontes, and M. A. Romero, "Numerical comparison between conventional dispersion compensating fibers and photonic crystal fibers as lumped Raman amplifiers," Opt. Express 17, 23169-23180 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Lin, H. Kogelnik, and L. G. Cohen, “Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3 - 1.7-μ m spectral region,” Opt. Lett. 5(11), 476–478 (1980). [CrossRef] [PubMed]
  2. J. M. Dugan, A. J. Price, M. Ramadan, D. L. Wolf, E. F. Murphy, A. J. Antos, D. K. Smith, and D. W. Hall, “All-optical, fiber-based 1550 nm dispersion compensation in a 10 Gb/s, 150 km transmission experiment over 1310 nm optimized fiber,” in Proceedings of the Optical Fiber Communications Conference (OFC), (San Jose, CA, 1992), Paper PD14.
  3. P. B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, and A. J. Stentz, “Raman amplification for loss compensation in dispersion compensating fiber modules,” Electron. Lett. 34(11), 1136–1137 (1998). [CrossRef]
  4. J. D. Ania-Castañon and S. K. Turitsyn, “Noise and gain optimisation in bi-directionally pumped dispersion compensating amplifier modules,” Opt. Commun. 224(1-3), 107–111 (2003). [CrossRef]
  5. A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9(13), 687–697 (2001). [CrossRef] [PubMed]
  6. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003). [CrossRef] [PubMed]
  7. L.- P. Shen, W.-P. Huang, and S.-S. Jian, “Design of photonic crystal fibers for dispersion related applications,” J. Lightwave Technol. 21(7), 1644–1651 (2003). [CrossRef]
  8. T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23(12), 4178–4183 (2005). [CrossRef]
  9. L. Yao, S. Lou, H. Fang, T. Guo, H. Li, and S. Jian, “High Negative Dispersion and Low Confinement Loss Photonic Crystal Fiber,” in Asia Optical Fiber Communication & Optoelectronic Exposition (OEA), (Shangai, 2007).
  10. Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Large Negative Dispersion in Dual-Core Photonic Crystal Fibers Based on Optional Mode Coupling,” IEEE Photon. Technol. Lett. 20(16), 1402–1404 (2008). [CrossRef]
  11. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef] [PubMed]
  12. B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Slope-matched dispersion-compensating photonic crystal fiber,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CPDD3.
  13. Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, “Raman effects in a highly nonlinear holey fiber: amplification and modulation,” Opt. Lett. 27(6), 424–426 (2002). [CrossRef] [PubMed]
  14. S. P. N. Cani, C. A. De Francisco, D. H. Spadoti, V. E. Nascimento, B.-H. V. Borges, L. C. Calmon, and M. A. Romero, “Requirements for efficient Raman amplification and dispersion compensation using microstructured optical fibers,” Fiber Integr. Opt. 26(5), 255–270 (2007). [CrossRef]
  15. K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero, “Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment,” Microw. Opt. Technol. Lett. 49(4), 872–874 (2007). [CrossRef]
  16. J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, “Progress on low loss photonic crystal fibers,” Opt. Fiber Technol. 11(2), 101–110 (2005). [CrossRef]
  17. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultralow loss and long length photonic crystal fiber,” J. Lightwave Technol. 22(1), 7–10 (2004). [CrossRef]
  18. P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun Rep. 2(5), 435–461 (2005). [CrossRef]
  19. S. K. Varshney, K. Saitoh, M. Koshiba, and P. J. Roberts, “Analysis of a realistic and idealized dispersion-compensating photonic crystal fiber Raman amplifier,” Opt. Fiber Technol. 13(2), 174–179 (2007). [CrossRef]
  20. S. P. Cani, M. Freitas, R. T. Almeida, and L. C. Calmon, “Raman amplifier performance of dispersion compensating fibers,” in Proceedings of SBMO/IEEE MTT-S International Microwave and Optoeletronics Conference (IMOC 2003), (Iguazu Falls, Brazil, 2003), pp. 553–558.
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, USA, 3rd edition, 2001), Chap.8.
  22. D. Dahan and G. Eisenstein, “Numerical comparison between distributed and discrete amplification in a point-to-point 40 Gbit/s 40-WDM-based transmission system with three different modulation formats,” J. Lightwave Technol. 20(3), 379–388 (2002). [CrossRef]
  23. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11(5), 530–532 (1999). [CrossRef]
  24. M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, “Analysis of a multiple-pump Raman amplifier,” Appl. Phys. Lett. 78(10), 1322–1324 (2001). [CrossRef]
  25. S. P. Cani, L. C. Calmon, M. J. Pontes, M. R. N. Ribeiro, M. E. V. Segatto, and A. V. T. Cartaxo, “An analytical approximated solution for the gain of broadband Raman amplifiers with multiple counter-pumps,” J. Lightwave Technol. 27(7), 944–951 (2009). [CrossRef]
  26. Y. Aoki, “Properties of fiber Raman amplifiers and their applicability to digital optical communication systems,” J. Lightwave Technol. 6(7), 1225–1239 (1988). [CrossRef]
  27. C. E. S. Castellani, S. P. N. Cani, M. E. Segatto, M. J. Pontes, and M. A. Romero, “Design methodology for multi-pumped discrete Raman amplifiers: case-study employing photonic crystal fibers,” Opt. Express 17(16), 14121–14131 (2009). [CrossRef] [PubMed]
  28. S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, “Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band,” Opt. Express 13(23), 9516–9526 (2005). [CrossRef] [PubMed]
  29. S. G. Leon-Saval, T. A. Birks, N. Y. Joly, A. K. George, W. J. Wadsworth, G. Kakarantzas, and P. S. J. Russell, “Splice-free interfacing of photonic crystal fibers,” Opt. Lett. 30(13), 1629–1631 (2005). [CrossRef] [PubMed]
  30. A. Huttunen and P. Törmä, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Opt. Express 13(2), 627–635 (2005). [CrossRef] [PubMed]
  31. S. Yang, Y. J. Zhang, X. Z. Peng, Y. Lu, S. H. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, “Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field,” Opt. Express 14(7), 3015–3023 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited