OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 23204–23212

Nonlinear trimer resonators for compact ultra-fast switching

Kenzo Yamaguchi, Masamitsu Fujii, Masanobu Haraguchi, Toshihiro Okamoto, and Masuo Fukui  »View Author Affiliations

Optics Express, Vol. 17, Issue 25, pp. 23204-23212 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2860 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and numerically verify a scheme for compact optical modulation which can enable complex directional switching of signals in integrated micro-optical circuits within hundreds of femtoseconds. The scheme is based on a trimer comprised of two identical silica whispering gallery mode (WGM) microresonators spaced by a central non-linear WGM resonator. The non-linear resonator is in the form of a silica cylinder with a thin coating of an ultrafast Kerr nonlinear material (a J-aggregate of cyanine dye). Using a two-dimensional finite-difference time-domain method and realistic material and structural parameters, we investigated the near-field coupling from a waveguide to the trimer and the subsequent switching process. In our scheme the sandwiched central control resonator has a resonant frequency that is mismatched to that of the input and output resonators. Therefore the optical energy is coupled from the waveguide into only the primary resonator in linear operation. However, for control light intensities of more than ~10−2 W/μm the effective index and hence eigenfrequency of the central resonator can be shifted to match that of its neighbors and hence the optical energy can be redirected.

© 2009 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

Original Manuscript: September 28, 2009
Revised Manuscript: November 17, 2009
Manuscript Accepted: December 1, 2009
Published: December 3, 2009

Kenzo Yamaguchi, Masamitsu Fujii, Masanobu Haraguchi, Toshihiro Okamoto, and Masuo Fukui, "Nonlinear trimer resonators for compact ultra-fast switching," Opt. Express 17, 23204-23212 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  3. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005). [CrossRef] [PubMed]
  4. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999). [CrossRef]
  5. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15(23), 15523–15530 (2007). [CrossRef] [PubMed]
  6. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004). [CrossRef] [PubMed]
  7. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009). [CrossRef] [PubMed]
  8. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008). [CrossRef] [PubMed]
  9. J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92(6), 2223–2229 (2007). [CrossRef] [PubMed]
  10. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004). [CrossRef] [PubMed]
  11. M. Haraguchi, T. Okamoto, and M. Fukui, ““Optical Switching Phenomena of Kerr Nonlinear Microsphere Due to Near-Field Coupling: Numerical Analysis,” IEICE. Trans. Electron,” E 85-C, 2059 (2002).
  12. M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and K. Kato, “Fabrication and optical characterization of a TiO2 thin film on a SiO2 micro-sphere,” Surf. Sci. 548(1-3), 59–66 (2004). [CrossRef]
  13. A. E. Miroshnichenko and Y. S. Kivshar, “Mach-Zehnder-Fano interferometer,” Appl. Phys. Lett. 95(12), 121109 (2009). [CrossRef]
  14. L. Li, X. Zhang, and L. Chen, “Optical bistability and Fano-like resonance transmission in a ring cavity-coupled Michelson interferometer,” J. Opt. A, Pure Appl. Opt. 10(7), 075305 (2008). [CrossRef]
  15. K. Yamaguchi, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Fabrication and Optical Evaluation of Silica Microsphere Coated with J-Aggregates,” Jpn. J. Appl. Phys. 45(No. 8B), 6750–6753 (2006). [CrossRef]
  16. K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-Modulation of Scattering Intensity from a Silica Sphere Coated with a Sol-Gel Film Doped with J-Aggregates,” Opt. Rev. 13(4), 292–296 (2006). [CrossRef]
  17. S. Yang and V. N. Astratov, “Spectroscopy of coherently coupled whispering-gallery modes in size-matched bispheres assembled on a substrate,” Opt. Lett. 34(13), 2057–2059 (2009). [CrossRef] [PubMed]
  18. S. V. Boriskina, “Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides,” Opt. Express 15(25), 17371–17379 (2007). [CrossRef] [PubMed]
  19. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express 13(20), 8286–8295 (2005). [CrossRef] [PubMed]
  20. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 1st ed. (Artech House, Norwood, MA, 1995).
  21. J. H. Greene and A. Taflove, “General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics,” Opt. Express 14(18), 8305 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited