OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23755–23764

Spectral and electro-optic response of UV-written waveguides in LiNbO3 single crystals

C.L. Sones, P. Ganguly, Y.J. Ying, F. Johann, E. Soergel, R.W. Eason, and S. Mailis  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23755-23764 (2009)
http://dx.doi.org/10.1364/OE.17.023755


View Full Text Article

Enhanced HTML    Acrobat PDF (405 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental study of the spectral and electro-optic response of direct UV-written waveguides in LiNbO3 is reported. The waveguides were written using c.w. laser radiation at 275, 300.3, 302, and 305 nm wavelengths with various writing powers (35-60 mW) and scan speeds (0.1-1.0 mm/sec). Spectral analysis was used to determine the multimode and single mode wavelength regions and, the cut-off point of the fabricated waveguides. Electro-optic characterization of these waveguides reveals that the electro-optic coefficient (r33) decreases for longer writing wavelengths, with a maximum of 31 pm/V for 275 nm and, is reduced to 14 pm/V for waveguides written with 305 nm.

© 2009 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(130.3730) Integrated optics : Lithium niobate

ToC Category:
Integrated Optics

History
Original Manuscript: September 14, 2009
Revised Manuscript: November 3, 2009
Manuscript Accepted: November 3, 2009
Published: December 11, 2009

Citation
C. L. Sones, P. Ganguly, Y. J. Ying, F. Johann, E. Soergel, R. W. Eason, and S. Mailis, "Spectral and electro-optic response of UV-written waveguides in LiNbO3 single crystals," Opt. Express 17, 23755-23764 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23755


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28(16), 1433–1435 (2003). [CrossRef] [PubMed]
  2. P. Ganguly, C. L. Sones, Y. J. Ying, H. Steigerwald, K. Buse, E. Soergel, R. W. Eason, and S. Mailis, “Determination of Refractive Indices From the Mode Profiles of UV-Written Channel Waveguides in LiNbO3-Crystals for Optimization of Writing Conditions,” J. Lightwave Technol. 27(16), 3490–3497 (2009). [CrossRef]
  3. A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006). [CrossRef]
  4. K. A. H. van Leeuwen and H. T. Nijnuis, “Measurement of higher-order mode attenuation in single-mode fibers: effective cutoff wavelength,” Opt. Lett. 9(6), 252–254 (1984). [CrossRef] [PubMed]
  5. T. Lang, L. Thevenaz, Z. B. Ren, and P. Robert, “Cutoff wavelength measurement of TiLiNbO3 channel wave-guides,” Meas. Sci. Technol. 5(9), 1124–1130 (1994). [CrossRef]
  6. P. Ganguly, B. Umapathi, S. Das, J. C. Biswas, and S. K. Lahiri, “Fabrication and characterisation of Ti:LiNbO3 waveguides,” in International conference on Optics and Optoelectronics (Dehradun, India, 9–12th December, 1998), pp. 450–455.
  7. C. F. McConaghy, K. F. Hunenberg, D. Sweider, M. Lowry, and R. A. Becker, “White-light spectral-analysis of Lithium-Niobate wave-guides,” J. Lightwave Technol. 13(1), 83–87 (1995). [CrossRef]
  8. A. Mendez, G. De la Paliza, A. Garcia-Cabanes, and J. M. Cabrera, “Comparison of the electro-optic coefficient (r33) in well-defined phases of proton exchanged LiNbO3 waveguides,” Appl. Phys. B 73, 485–488 (2001).
  9. S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive Barium Titanate and Strontium Barium Niobate,” IEEE J. Quantum Electron. 23(12), 2116–2121 (1987). [CrossRef]
  10. E. L. Wooten and W. S. C. Chang, “Test structures for characterization of electrooptic waveguide modulators in lithium niobate,” IEEE J. Quantum Electron. 29(1), 161–170 (1993). [CrossRef]
  11. A. Ródenas, D. Jaque, C. Molpeceres, S. Lauzurica, J. L. Ocana, G. A. Torchia, and F. Agullo-Rueda, “Ultraviolet nanosecond laser-assisted micro-modifications in lithium niobate monitored by Nd3+ luminescence,” Appl. Phys., A Mater. Sci. Process. 87(1), 87–90 (2007). [CrossRef]
  12. D. C. Deshpande, A. P. Malshe, E. A. Stach, V. Radmilovic, D. Alexander, D. Doerr, and D. Hirt, “Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate,” J. Appl. Phys. 97(7), 074316 (2005). [CrossRef]
  13. J. Burghoff, C. Grebing, S. Nolte, and A. Tunnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci. 253(19), 7899–7902 (2007). [CrossRef]
  14. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  15. I. P. Kaminow and V. Ramaswam, “Lithium-Niobate ridge waveguide-modulator,” Appl. Phys. Lett. 24(12), 622–624 (1974). [CrossRef]
  16. A. C. Muir, C. L. Sones, S. Mailis, R. W. Eason, T. Jungk, A. Hoffman, and E. Soergel, “Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser,” Opt. Express 16(4), 2336–2350 (2008). [CrossRef] [PubMed]
  17. F. Johann, Y. J. J. Ying, T. Jungk, A. Hoffmann, C. L. Sones, R. W. Eason, S. Mailis, and E. Soergel, “Depth resolution of piezoresponse force microscopy,” Appl. Phys. Lett. 94(17), 172904 (2009). [CrossRef]
  18. J. A. de Toro, M. D. Serrano, A. G. Cabanes, and J. M. Cabrera, “Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3,” Opt. Commun. 154(1-3), 23–27 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited