OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23959–23964

Enhanced nonlinear optical properties of graphene-oligothiophene hybrid material

Xiao-Liang Zhang, Xin Zhao, Zhi-Bo Liu, Yong-Sheng Liu, Yong-Sheng Chen, and Jian-Guo Tian  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 23959-23964 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (229 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear optical and optical limiting properties of an oligothiophene (6THIOP) covalently functionalized graphene hybrid material (Graphene-6THIOP) were investigated by using Z-scan technique with a 5ns Q-switched pulsed laser at 532 nm. Results show that the hybrid material of Graphene-6THIOP exhibits enhanced nonlinear optical and optical limiting properties in comparison to individual 6THIOP, graphene moiety and C60. The enhanced nonlinear optical properties of Graphene-6THIOP should be attributed to the combination of the observed nonlinear scattering with the possible photoinduced electron or energy transfer mechanism between 6THIOP moiety and graphene.

© 2009 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(290.5820) Scattering : Scattering measurements

ToC Category:
Nonlinear Optics

Original Manuscript: September 1, 2009
Revised Manuscript: November 25, 2009
Manuscript Accepted: November 25, 2009
Published: December 16, 2009

Xiao-Liang Zhang, Xin Zhao, Zhi-Bo Liu, Yong-Sheng Liu, Yong-Sheng Chen, and Jian-Guo Tian, "Enhanced nonlinear optical properties of graphene-oligothiophene hybrid material," Opt. Express 17, 23959-23964 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356(6366), 225–226 (1992). [CrossRef]
  2. C. L. Liu, G. Z. Zhao, Q. H. Gong, K. L. Tang, X. L. Jin, P. Cui, and L. Li, “Optical limiting property of molybdenum complex of fullerene C70,” Opt. Commun. 184(1-4), 309–313 (2000). [CrossRef]
  3. K. Mansour, M. J. Soileau, and E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9(7), 1100–1109 (1992). [CrossRef]
  4. X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73(25), 3632–3634 (1998). [CrossRef]
  5. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999). [CrossRef]
  6. L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40(10), 1789–1797 (2002). [CrossRef]
  7. Z. X. Jin, X. Sun, G. Q. Xu, S. H. Goh, and W. Ji, “Nonlinear optical properties of some polymer/multi-walled carbon nanotube composites,” Chem. Phys. Lett. 318(6), 505–510 (2000). [CrossRef]
  8. J. E. Riggs, D. B. Walker, D. L. Carroll, and Y. P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104(30), 7071–7076 (2000). [CrossRef]
  9. L. Q. Liu, S. Zhang, T. J. Hu, Z. X. Guo, C. Ye, L. M. Dai, and D. B. Zhu, “Solubilized multi-walled carbon nanotubes with broadband optical limiting effect,” Chem. Phys. Lett. 359(3-4), 191–195 (2002). [CrossRef]
  10. D. Li and R. B. Kaner, “Materials science. Graphene-based materials,” Science 320(5880), 1170–1171 (2008). [CrossRef] [PubMed]
  11. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007). [CrossRef] [PubMed]
  12. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007). [CrossRef] [PubMed]
  13. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef] [PubMed]
  14. Z. B. Liu, Y. Wang, X. L. Zhang, Y. F. Xu, Y. S. Chen, and J. G. Tian, “Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94(2), 021902 (2009). [CrossRef]
  15. Y. F. Xu, Z. B. Liu, X. L. Zhang, Y. Wang, J. G. Tian, Y. Huang, Y. F. Ma, X. Y. Zhang, and Y. S. Chen, “A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property,” Adv. Mater. 21(12), 1275–1279 (2009). [CrossRef]
  16. Z. B. Liu, J. G. Tian, Z. Guo, D. M. Ren, F. Du, J. Y. Zheng, and Y. S. Chen, “Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes,” Adv. Mater. 20(3), 511–515 (2008). [CrossRef]
  17. W. S. Li, Y. Yamamoto, T. Fukushima, A. Saeki, S. Seki, S. Tagawa, H. Masunaga, S. Sasaki, M. Takata, and T. Aida, “Amphiphilic molecular design as a rational strategy for tailoring bicontinuous electron donor and acceptor arrays: photoconductive liquid crystalline oligothiophene--C60 dyads,” J. Am. Chem. Soc. 130(28), 8886–8887 (2008). [CrossRef] [PubMed]
  18. R. Yamada, H. Kumazawa, T. Noutoshi, S. Tanaka, and H. Tada, “Electrical conductance of oligothiophene molecular wires,” Nano Lett. 8(4), 1237–1240 (2008). [CrossRef] [PubMed]
  19. K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, and P. Bäuerle, “Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C60,” Adv. Mater. 18(21), 2872–2875 (2006). [CrossRef]
  20. Y. S. Liu, J. Y. Zhou, X. L. Zhang, Z. B. Liu, X. J. Wan, J. G. Tian, T. Wang, and Y. S. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47(13), 3113–3121 (2009). [CrossRef]
  21. H. A. Becerril, J. Mao, Z. F. Liu, R. M. Stoltenberg, Z. N. Bao, and Y. S. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008). [CrossRef] [PubMed]
  22. N. Venkatram, D. N. Rao, and M. A. Akundi, “Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles,” Opt. Express 13(3), 867–872 (2005). [CrossRef] [PubMed]
  23. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  24. W. Wu, S. Zhang, Y. Li, J. X. Li, L. Q. Liu, Y. J. Qin, Z. X. Guo, L. M. Dai, C. Ye, and D. B. Zhu, “PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer,” Macromolecules 36(17), 6286–6288 (2003). [CrossRef]
  25. Z. B. Liu, Y. L. Liu, B. Zhang, W. Y. Zhou, J. G. Tian, W. P. Zang, and C. P. Zhang, “Nonlinear absorption and optical limiting properties of carbon disulfide in a short-wavelength region,” J. Opt. Soc. Am. B 24(5), 1101–1104 (2007). [CrossRef]
  26. R. L. Sutherland, Handbook of Nonlinear Optics (Second Edition); Chapter 9, (Marcel Dekker: New York, 2003).
  27. D. Vincent, “Optical limiting threshold in carbon suspensions and reverse saturable absorber materials,” Appl. Opt. 40(36), 6646–6653 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited