OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23965–23974

Phase modulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors

X. M. Zhang, Yuxiang Liu, H. Bae, C. Pang, and M. Yu  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 23965-23974 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (611 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This letter presents a simple phase modulation scheme for interrogation of low-coherence interferometry based fiber-tip pressure sensors to enable real-time monitoring and miniaturization of the entire sensor system. The key idea is to introduce a sinusoidal modulation signal and retrieve the sensing cavity length change using a simple algorithm, without resorting to any time information. In experiments, phase modulation has been achieved by using a silicon-micromachined tunable Fabry-Pérot interferometer, which is integrated with a light source and a photodiode onto a single chip. Compared with the conventional interrogation methods, this scheme possesses the merits of being less susceptible to disturbance, easy control and easy miniaturization, making it particularly suitable for sensing in constrained spaces and harsh environments.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 8, 2009
Revised Manuscript: October 19, 2009
Manuscript Accepted: October 21, 2009
Published: December 16, 2009

X. M. Zhang, Yuxiang Liu, H. Bae, C. Pang, and M. Yu, "Phase modulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors," Opt. Express 17, 23965-23974 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Xu, X. Wang, K. L. Cooper, and A. Wang, "Miniature all-silica fiber optic pressure and acoustic sensors," Opt. Lett. 30(24), 3269-3271 (2005). [CrossRef]
  2. Y. Zhu, Z. Huang, F. Shen and A. Wang, "Sapphire-fiber-based white-light interferometric sensor for high temperature measurements," Opt. Lett. 30(7), 711-713 (2005). [CrossRef]
  3. W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. Jones, "Miniature fiber optic pressure sensors for turbomachinery applications," Rev. Sci. Instrum. 70(3), 1868-1874 (1999). [CrossRef]
  4. J. I. Peterson and G. G. Vurek, "Fiber-optic sensors for biomedical applications," Science 224(4645), 123-127 (1984). [CrossRef]
  5. S. Nesson, M. Yu, X. M. Zhang, and A. H. Hsieh, "Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements," J. Biomed. Opt. 13(4), 044040 (2008). [CrossRef]
  6. K. Totsu, Y. Haga, and M. Esashi, "Ultra-miniature fiber-optic pressure sensor using white light interferometry," J. Micromech. Microeng. 15(1), 71-75 (2005). [CrossRef]
  7. Y. J. Rao, "Recent progress in fiber-optic extrinsic Fabry-Pérot interferometric sensors," Opt. Fiber Technol. 12(3), 227-237 (2006). [CrossRef]
  8. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran and J. A. Greene, "Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system," Meas. Sci. Technol. 7(1), 58-61 (1996). [CrossRef]
  9. E. Cibula and D. Ðonlagic, "Miniature fiber-optic pressure sensor with a polymer diaphragm," Appl. Opt. 44(14), 2736-2744 (2005). [CrossRef]
  10. Y. Zhu and A. Wang," Miniature Fiber-Optic Pressure Sensor," IEEE Photon. Technol. Lett. 17(2), 447-449 (2005).
  11. Y. Wang, M. Han, and A. Wang, "High-speed fiber-optic spectrometer for signal demodulation of interferometric fiber-optic sensors," Opt. Lett. 31(16), 2408-2410 (2006). [CrossRef]
  12. Y. Wang, M. Han and A. Wang, "Analysis of a high-speed fiber-optic spectrometer for fiber-optic sensor signal processing," Appl. Opt. 46(33), 8149-8158 (2007). [CrossRef]
  13. B. T. Meggitt, "Fiber optic white light interferometric sensors," in Optical Fiber Sensor Technology -Fundamentals, K. T. V. Gratten and B. T. Meggitt, eds. (Kluwer, 2000), pp. 205-214.
  14. K. J. Gåsvik, Optical Metrology, 2nd ed. (John Wiley & Sons, 1995).
  15. Y. J. Rao and D. A. Jackson, "Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading," Opt. Lett. 18(24), 2153-2155 (1993). [CrossRef]
  16. M. Adachi, "Phase-shift algorithm for white-light interferometry insensitive to linear errors in phase shift," Opt. Rev. 15(3), 148-155 (2008). [CrossRef]
  17. M. Yu and B. Balachandran, "Acoustic measurements using a fiber optic sensor system", J. Intell. Mater. Syst. Struct. 14(7), 409-414 (2003). [CrossRef]
  18. C-S Kang, J-A Kim, T. B. Eom, R. Jang, H. Y. Park, and J. W. Kim, "High speed phase shifting interferometry using injection locking of the laser frequency to the resonant modes of a confocal Fabry-Perot cavity," Opt. Express 17(3), 1442-1446 (2009). [CrossRef]
  19. M. Schmidt, B. Werther, N. Fürstenau, M. Matthias, and T. Melz, "Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with < 50 pm displacement resolution using three-wavelength digital phase demodulation," Opt. Express 8(8), 475-480 (2001). [CrossRef]
  20. J. M. Kilpatrick, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, "Phase-demodulation error of a fiber optic Fabry-Perot sensor with complex reflection coefficients," Appl. Opt. 39(9), 1382-1388 (2000). [CrossRef]
  21. W. N. MacPherson, S. R. Kidd, J. S. Barton, and J. D. C. Jones, "Phase demodulation in optical fibre Fabry-Perot sensors with inexact phase steps," IEE Proc. Optoelectron. 144(3), 130-133 (1997). [CrossRef]
  22. R. Legtenberg, A. W. Groeneveld and M. Elwenspoek, "Comb-drive actuators for large displacements," J. Micromech. Microeng. 6(3), 320-329 (1996). [CrossRef]
  23. A. Dubois, "Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets," J. Opt. Soc. Am. A 18(8), 1972-1979 (2001). [CrossRef]
  24. J. H. Cole, B. A. Danver, and J. A. Bucaro, "Synthetic-heterodyne interferometric demoludation," IEEE J. Quantum Electron. 18(4), 694-697 (1982). [CrossRef]
  25. A. Dandridge, A. B. Tveten, and G. Giallorenzi, "Homodyne demodulation scheme for fiber optic sensor using phase generated carrier," IEEE Trans. Microwave Theory Tech. MTT-30(10), 1635-1641 (1982). [CrossRef]
  26. M. J Connelly, "Digital synthetic-heterodyne interferometric demodulation," J. Opt. A: Pure Appl. Opt. 4(6), S400-S405 (2002). [CrossRef]
  27. M. J. Connelly, P. Szecowka, R. Jallapuram, S. Martin, V. Toal and M. P. Whelan, "Laser Doppler vibrometry system using the synthetic-heterodyne interferometric demodulation scheme implemented on a CMOS DSP camera," in Proceedings of Sixth International Symposium, Communication Systems, Networks and Digital Signal Processing, E. Leitgeb, W. Kogler, Z. Ghassemlooy, eds. (Graz, Austria, 2008), pp. 133-136.
  28. S-C Huang and H. Lin, "Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber," Appl. Opt. 46(31), 7594-7603 (2007). [CrossRef]
  29. L. Feng, J. He, J-Y Duan, F. Li, and Y-L Liu, "Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on Compact RIO," J. Electron. Sci. Technol. China 6(4), 385-388 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited