OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24288–24303

Nanoplasmonics of prime number arrays

Carlo Forestiere, Gary F. Walsh, Giovanni Miano, and Luca Dal Negro  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24288-24303 (2009)
http://dx.doi.org/10.1364/OE.17.024288


View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we investigate the plasmonic near-field localization and the far-field scattering properties of non-periodic arrays of Ag nanoparticles generated by prime number sequences in two spatial dimensions. In particular, we demonstrate that the engineering of plasmonic arrays with large spectral flatness and particle density is necessary to achieve a high density of electromagnetic hot spots over a broader frequency range and a larger area compared to strongly coupled periodic and quasi-periodic structures. Finally, we study the far-field scattering properties of prime number arrays illuminated by plane waves and we discuss their angular scattering properties. The study of prime number arrays of metal nanoparticles provides a novel strategy to achieve broadband enhancement and localization of plasmonic fields for the engineering of nanoscale nano-antenna arrays and active plasmonic structures.

© 2009 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.4020) Scattering : Mie theory
(050.6624) Diffraction and gratings : Subwavelength structures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 27, 2009
Revised Manuscript: November 9, 2009
Manuscript Accepted: November 9, 2009
Published: December 18, 2009

Citation
Carlo Forestiere, Gary F. Walsh, Giovanni Miano, and Luca Dal Negro, "Nanoplasmonics of prime number arrays," Opt. Express 17, 24288-24303 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24288


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A, Pure Appl. Opt. 10(6), 064013 (2008). [CrossRef]
  2. A. Gopinath, S. V. Boriskina, N. N. Feng, B. M. Reinhard, and L. Dal Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008). [CrossRef] [PubMed]
  3. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express 16(8), 5544 (2008). [CrossRef] [PubMed]
  4. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic Aperiodic Arrays of Metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009). [CrossRef] [PubMed]
  5. S. G. Williams, Symbolic dynamics and its applications, (American Mathematical Society, 2004).
  6. P. Prusinkiewicz, and A. Lindenmayer, The algorithmic beauty of plants, (Springer Verlag, 1990).
  7. J. Mishra, and S. N. Mishra, L-System Fractals, (Elsevier, 2007).
  8. M. R. Schroeder, Number theory in science and communication, (Springer Verlag, 1985).
  9. G. H. Hardy, and E. M. Wright, An introduction to the theory of numbers, (Oxford University Press, 2008).
  10. S. J. Miller, and R. Takloo-Bighash, An Invitation to Modern Number Theory, (Princeton University Press, 2006).
  11. M. Queffelec, “Substitution dynamical systems-spectral analysis,” (Springer, 1987).
  12. E. Maciá, “The role of aperiodic order in science and technology,” Rep. Prog. Phys. 69(2), 397–441 (2006). [CrossRef]
  13. M. Dulea, M. Johansson, and R. Riklund, “Localization of electrons and electromagnetic waves in a deterministic aperiodic system,” Phys. Rev. B Condens. Matter 45(1), 105–114 (1992). [CrossRef] [PubMed]
  14. L. Dal Negro and N. N. Feng, “Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles,” Opt. Express 15(22), 14396 (2007). [CrossRef] [PubMed]
  15. C. Forestiere, G. Miano, G. Rubinacci, and L. Dal Negro, “Role of aperiodic order in the spectral, localization, and scaling properties of plasmon modes for the design of nanoparticle arrays,” Phys. Rev. B Condens. Matter 79(8), 85404 (2009). [CrossRef]
  16. L. Kroon, E. Lennholm, and R. Riklund, “Localization-delocalization in aperiodic systems,” Phys. Rev. B Condens. Matter 66(9), 094204 (2002). [CrossRef]
  17. A. Gopinath, N. Lawrence, S. Boriskina, L. Dal Negro, “Enhancement of the 1.54μm Erbium emission in aperiodic plasmonic arrays” in preparation.
  18. C. Forestiere, G. Miano, S. V. Boriskina, and L. Dal Negro, “The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays,” Opt. Express 17(12), 9648–9661 (2009). [CrossRef] [PubMed]
  19. C. Janot, Quasicrystals: A Primer, (Oxford University Press, 1997).
  20. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972). [CrossRef]
  21. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007). [CrossRef] [PubMed]
  22. M. R. Schroeder, “A simple function and its Fourier transform,” Math. Intelligencer 4(3), 158–161 (1982). [CrossRef]
  23. M. L. Stein, S. M. Ulam, and M. B. Wells, “A visual display of some properties of the distribution of primes,” Am. Math. Mon. 71(5), 516 (1964). [CrossRef]
  24. J. D. Johnston, “Transform Coding of Audio Signals Using Perceptual Noise Criteria,” IEEE J. Sel. Areas Comm. 6(2), 314 (1988). [CrossRef]
  25. L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006).
  26. C. Forestiere, A. Gopinath, G. Miano, L. Dal Negro, S. Boriskina, “Structural resonances in finite-size periodic plasmonic arrays,” in preparation.
  27. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantennas,” Phys. Rev. B Condens. Matter 78(19), 195111 (2008). [CrossRef]
  28. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  29. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple scattering of light by particles: radiative transfer and coherent backscattering, (Cambridge University Press, 2006).
  30. J. D. Jackson, Classical Electrodynamics, (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited