OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24334–24341

Encapsulated subwavelength grating as a quasi-monolithic resonant reflector

Frank Brückner, Daniel Friedrich, Michael Britzger, Tina Clausnitzer, Oliver Burmeister, Ernst-Bernhard Kley, Karsten Danzmann, Andreas Tünnermann, and Roman Schnabel  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24334-24341 (2009)
http://dx.doi.org/10.1364/OE.17.024334


View Full Text Article

Enhanced HTML    Acrobat PDF (2372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For a variety of laser interferometric experiments, the thermal noise of high-reflectivity multilayer dielectric coatings limits the measurement sensitivity. Recently, monolithic high-reflection waveguide mirrors with nanostructured surfaces have been proposed to reduce the thermal noise in interferometric measurements. Drawbacks of this approach are a highly complicated fabrication process and the high susceptibility of the nanostructured surfaces to damage and pollution. Here, we propose and demonstrate a novel quasi-monolithic resonant surface reflector that also avoids the thick dielectric stack of conventional mirrors but has a flat and robust surface. Our reflector is an encapsulated subwavelength grating that is based on silicon. We measured a high reflectivity of 93% for a wavelength of λ=1.55 µm under normal incidence. Perfect reflectivities are possible in theory.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.3990) Optical devices : Micro-optical devices
(230.4040) Optical devices : Mirrors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 23, 2009
Revised Manuscript: December 16, 2009
Manuscript Accepted: December 17, 2009
Published: December 18, 2009

Citation
Frank Brückner, Daniel Friedrich, Michael Britzger, Tina Clausnitzer, Oliver Burmeister, Ernst-Bernhard Kley, Karsten Danzmann, Andreas Tünnermann, and Roman Schnabel, "Encapsulated subwavelength grating as a quasi-monolithic resonant reflector," Opt. Express 17, 24334-24341 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24334


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a Mirror by Radiation Pressure," Phys. Rev. Lett. 83,3174-3177 (1999). [CrossRef]
  2. T. Corbitt, Y. Chen, E. Innerhofer, H. Muller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, "An All-Optical Trap for a Gram-Scale Mirror," Phys. Rev. Lett. 98,150802 (2007). [CrossRef] [PubMed]
  3. H. Muller-Ebhardt, H. Rehbein, R. Schnabel, K. Danzmann, and Y. Chen, "Entanglement of Macroscopic Test Masses and the Standard Quantum Limit in Laser Interferometry," Phys. Rev. Lett. 100,013601 (2008). [CrossRef] [PubMed]
  4. H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, "Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and output optics," Phys.Rev D. 65,022002 (2001). [CrossRef]
  5. P. Aufmuth and K. Danzmann, "Gravitational wave detectors," New J. Phys. 7,202 (2005). [CrossRef]
  6. G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, "Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings," Class. Quantum Grav. 19,897-917 (2002). [CrossRef]
  7. D. R. M. Crooks, P. Sneddon, G. Cagnoli, J. Hough, S. Rowan, M. M. Fejer, E. Gustafson, R. Route, N. Nakagawa, D. Coyne, G. M. Harry and A. M. Gretarsson, "Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors," Class. Quantum Grav. 19,883-896 (2002). [CrossRef]
  8. K. Numata, A. Kemery, and J. Camp, "Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities," Phys. Rev. Lett. 93,250602 (2004). [CrossRef]
  9. Y. Levin, "Internal thermal noise in the LIGO test masses: A direct approach," Phys. Rev. D 57,659-663 (1998). [CrossRef]
  10. G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992). [CrossRef] [PubMed]
  11. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, "Total reflection of light from a corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15,886-887 (1985). [CrossRef]
  12. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61,1022-1024 (1992). [CrossRef]
  13. A. Sharon, D. Rosenblatt, and A. A. Friesem, "Resonant grating-waveguide structures for visible and nearinfrared radiation," J. Opt. Soc. Am. A 14,2985-2993 (1997). [CrossRef]
  14. R. Nawrodt, A. Zimmer, T. Koettig, T. Clausnitzer, A. Bunkowski, E.-B. Kley, R. Schnabel, K. Danzmann, W. Vodel, A. T¨unnermann, and P. Seidel, "Mechanical Q-factor measurements on a test mass with a structured surface," New J. Phys. 9,225 (2007). [CrossRef]
  15. T. Clausnitzer, A. V. Tishchenko, E.-B. Kley, H.-J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, "Narrowband, polarization-independent free-space wave notch filter," J. Opt. Soc. Am. A 22,2799-2803 (2005). [CrossRef]
  16. A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, "High reflectivity grating waveguide coatings for 1064 nm," Class. Quantum Grav. 23,7297-7303 (2006). [CrossRef]
  17. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-Band Mirror (1.12 - 1.62 μm) Using a Subwavelength Grating," IEEE Phot. Techn. Lett. 16,1676-1678 (2004). [CrossRef]
  18. F. Bruckner, D. Friedrich, T. Clausnitzer, O. Burmeister, M. Britzger, E.-B. Kley, K. Danzmann, A. Tunnermann, and R. Schnabel, "Demonstration of a cavity coupler based on a resonant waveguide grating," Opt. Express 17,163-169 (2009). [CrossRef] [PubMed]
  19. G. Cella and A. Giazotto, "Coatingless, tunable finesse interferometer for gravitational wave detection," Phys.Rev D. 74, 042001 (2006). [CrossRef]
  20. S. Goßler, J. Cumpston, K. McKenzie, C. M. Mow-Lowry, M. B. Gray, and D. E. McClelland, "Coating-free mirrors for high precision interferometric experiments," Phys. Rev A. 76, 053810 (2007). [CrossRef]
  21. F. Bruckner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tunnermann, and R. Schnabel, "Monolithic dielectric surfaces as new low-loss light-matter interfaces," Opt. Lett. 33, 264-266 (2008). [CrossRef] [PubMed]
  22. P. Lalanne and D. Lemercier-Lalanne, "On the effective medium theory of subwavelength periodic structures," J. Mod. Opt. 43, 2063 (1996). [CrossRef]
  23. T. Clausnitzer, T. Kampfe, E.-B. Kley, A. Tunnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, "An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings," Opt. Express 13,10448-10456 (2005). [CrossRef] [PubMed]
  24. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71,811-818 (1981). [CrossRef]
  25. T. Clausnitzer, T. Kampfe, F. Bruckner, R. Heinze, E.-B. Kley, and A. Tunnermann, "Reflection-reduced encapsulated transmission grating," Opt. Lett. 33,1972-1974 (2008). [CrossRef] [PubMed]
  26. J. Nishii, K. Kintaka, and T. Nakazawa, "High-efficiency transmission gratings buried in a fused-SiO2 glass plate," Appl. Opt. 43,1327-1330 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited