OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24377–24402

A comparative study of high resolution microscopy imaging modalities using a three-dimensional resolution measure

Jerry Chao, Sripad Ram, E. Sally Ward, and Raimund J. Ober  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24377-24402 (2009)
http://dx.doi.org/10.1364/OE.17.024377


View Full Text Article

Enhanced HTML    Acrobat PDF (2987 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

From an acquired image, single molecule microscopy makes possible the determination of the distance separating two closely spaced biomolecules in three-dimensional (3D) space. Such distance information can be an important indicator of the nature of the biomolecular interaction. Distance determination, however, is especially difficult when, for example, the imaged point sources are very close to each other or are located near the focal plane of the imaging setup. In the context of such challenges, we compare the limits of the distance estimation accuracy for several high resolution 3D imaging modalities. The comparisons are made using a Cramer-Rao lower bound-based 3D resolution measure which predicts the best possible accuracy with which a given distance can be estimated. Modalities which separate the detection of individual point sources (e.g., using photoactivatable fluorophores) are shown to provide the best accuracy limits when the two point sources are very close to each other and/or are oriented near parallel to the optical axis. Meanwhile, modalities which implement the simultaneous imaging of the point sources from multiple focal planes perform best when given a near-focus point source pair. We also demonstrate that the maximum likelihood estimator is capable of attaining the limit of the accuracy predicted for each modality.

© 2009 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(030.5290) Coherence and statistical optics : Photon statistics
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(110.3055) Imaging systems : Information theoretical analysis

ToC Category:
Microscopy

History
Original Manuscript: November 12, 2009
Revised Manuscript: December 14, 2009
Manuscript Accepted: December 17, 2009
Published: December 18, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Jerry Chao, Sripad Ram, E. Sally Ward, and Raimund J. Ober, "A comparative study of high resolution microscopy imaging modalities using a three-dimensional resolution measure," Opt. Express 17, 24377-24402 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24377


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. G. Walter, C. Huang, A. J. Manzo, and M. A. Sobhy, "Do-it-yourself guide: how to use the modern single molecule toolkit," Nat. Methods 5, 475-489 (2008). [CrossRef] [PubMed]
  2. W. E. Moerner, "New directions in single-molecule imaging and analysis," Proc. Natl. Acad. Sci. USA 104, 12596-12602 (2007). [CrossRef] [PubMed]
  3. X. Qu, D. Wu, L. Mets, and N. F. Scherer, "Nanometer-localized multiple single-molecule fluorescence microscopy," Proc. Natl. Acad. Sci. USA 101, 11298-11303 (2004). [CrossRef] [PubMed]
  4. M. P. Gordon, T. Ha, and P. R. Selvin, "Single-molecule high-resolution imaging with photobleaching," Proc. Natl. Acad. Sci. USA 101, 6462-6465 (2004). [CrossRef] [PubMed]
  5. K. A. Lidke, B. Rieger, T. M. Jovin, and R. Heintzmann, "Superresolution by localization of quantum dots using blinking statistics," Opt. Express 13, 7052-7062 (2005). [CrossRef] [PubMed]
  6. S. Ram, E. S. Ward, and R. J. Ober, "Beyond Rayleigh’s criterion: A resolution measure with application to single-molecule microscopy," Proc. Natl. Acad. Sci. USA 103, 4457-4462 (2006). [CrossRef] [PubMed]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006). [CrossRef] [PubMed]
  8. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, "Ultra-high resolution imaging by fluorescence photoactivation localization microscopy," Biophys. J. 91, 4258-4272 (2006). [CrossRef] [PubMed]
  9. M. Rust, M. Bates, and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods 3, 793-795 (2006). [CrossRef] [PubMed]
  10. A. Sharonov and R. M. Hochstrasser, "Wide-field subdiffraction imaging by accumulated binding of diffusing probes," Proc. Natl. Acad. Sci. USA 103, 18911-18916 (2006). [CrossRef] [PubMed]
  11. H. P. Kao and A. S. Verkman, "Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position," Biophys. J. 67, 1291-1300 (1994). [CrossRef] [PubMed]
  12. L. Holtzer, T. Meckel, and T. Schmidt, "Nanometric three-dimensional tracking of individual quantum dots in cells," Appl. Phys. Lett. 90, 053902 (2007). [CrossRef]
  13. T. Sun and S. B. Andersson, "Precise 3-D localization of fluorescent probes without numerical fitting," in Proceedings of the International Conference of IEEE Engineering in Medicine and Biology Society (IEEE, 2007) pp. 4181-4184.
  14. S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, "High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells," Biophys. J. 95, 6025-6043 (2008). [CrossRef] [PubMed]
  15. S. R. P. Paving and R. Piston, "Three dimensional tracking of fluorescent micro particles using a photon-limited double-helix response system," Opt. Express 16, 22048-22057 (2008). [CrossRef] [PubMed]
  16. S. Weiss, "Fluorescence spectroscopy of single bimolecular," Science 283, 1676-1683 (1999). [CrossRef] [PubMed]
  17. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999).
  18. M. Pluto, Advanced light microscopy, vol. 1: principles and basic properties (Elsevier, Amsterdam, 1988).
  19. S. Inoué, "Foundations of confocal scanned imaging in light microscopy," in "Handbook of Biological Confocal Microscopy," J. B. Pawley, ed. (Springer Science+Business Media, LLC, New York, 2006), 3rd ed.
  20. C. R. Rao, Linear statistical inference and its applications (Wiley, New York, USA, 1965).
  21. J. Chao, S. Ram, A. V. Abraham, E. S. Ward, and R. J. Ober, "A resolution measure for three-dimensional microscopy," Opt. Commun. 282, 1751-1761 (2009). [CrossRef]
  22. T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, "Ultrahigh-resolution multicolor colocalization of single fluorescent probes," Proc. Natl. Acad. Sci. USA 97, 9461-9466 (2000). [CrossRef] [PubMed]
  23. A. Agrawal, R. Deo, G. D. Wang, M. D. Wang, and S. Nie, "Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes," Proc. Natl. Acad. Sci. USA 105, 3298-3303 (2008). [CrossRef] [PubMed]
  24. S. Ram, E. S. Ward, and R. J. Ober, "How accurately can a single molecule be localized in three dimensions using a fluorescence microscope?" Proc. SPIE 5699, 426-435 (2005). [CrossRef] [PubMed]
  25. P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, "Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions," IEEE Trans. Nanobiosci. 3, 237-242 (2004). [CrossRef]
  26. P. Prabhat, Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward, "Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy," Proc. Natl. Acad. Sci. USA 104, 5889-5894 (2007). [CrossRef] [PubMed]
  27. S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, "A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking," Proc. SPIE 6443, 64430D1-D7 (2007).
  28. M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, "Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy," Opt. Express 17, 8264-8277 (2009). [CrossRef] [PubMed]
  29. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, "Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples," Nat. Methods 5, 527-529 (2008). [CrossRef] [PubMed]
  30. S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical microscopes," Multidimens. Syst. Sig. Process. 17, 27-57 (2006). [CrossRef]
  31. D. L. Snyder and M. I. Miller, Random point processes in time and space (Springer Verlag, New York, USA, 1991), 2nd Ed.
  32. "EstimationTool," http://www4.utsouthwestern.edu/wardlab/estimationtool.
  33. "FandPLimitTool," http://www4.utsouthwestern.edu/wardlab/fandplimittool.
  34. S. Zacks, The theory of statistical inference (John Wiley and Sons, New York, USA, 1971).
  35. S. F. Gibson and F. Lanni, "Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy," J. Opt. Soc. Am. A 9, 154-166 (1992). [CrossRef] [PubMed]
  36. P. Török and P. Varga, "Electromagnetic diffraction of light focused through a stratified medium," Appl. Opt. 36, 2305-2312 (1997). [CrossRef] [PubMed]
  37. O. Haeberlé, "Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: Conventional microscopy," Opt. Commun. 216, 55-63 (2003). [CrossRef]
  38. L. Tao and C. Nicholson, "The three-dimensional point spread functions of a microscope objective in image and object space," J. Microsc. 178, 267-271 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited