OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1963–1969

Ultrafast laser inscription: an enabling technology for astrophotonics

Robert R. Thomson, Ajoy K. Kar, and Jeremy Allington-Smith  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1963-1969 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of photonics to astronomy offers major advantages in the area of highly-multiplexed spectroscopy, especially when applied to extremely large telescopes. These include the suppression of the near-infrared night-sky spectrum [J. Bland-Hawthorn et al, Opt. Express 12, 5902 (2004), S. G. Leon-Saval et al, Opt. Lett. 30, 2545 (2005)] and the miniaturisation of spectrographs so that they may integrated into the light-path of individual spatial samples [J. Bland-Hawthorn et al, Proc SPIE 6269, 62690N (2006)]. Efficient collection of light from the telescope requires multimode optical fibres and three-dimensional photonic devices. We propose ultrafast laser inscription (ULI) [R. R. Thomson et al, Opt. Express 15, 11691 (2007)] as the best technology to fabricate 3D photonic devices for astrophotonic applications.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(350.1260) Other areas of optics : Astronomical optics

Original Manuscript: October 27, 2008
Revised Manuscript: December 4, 2008
Manuscript Accepted: December 9, 2008
Published: January 30, 2009

Virtual Issues
Focus Issue: Astrophotonics (2009) Optics Express

Robert R. Thomson, Ajoy K. Kar, and Jeremy Allington-Smith, "Ultrafast laser inscription: an enabling technology for astrophotonics," Opt. Express 17, 1963-1969 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Allington-Smith, "Strategies for spectroscopy on Extremely Large Telescopes - I. Image slicing", MNRAS 376,1099-1108 (2007). [CrossRef]
  2. S. C. Ellis and J. Bland-Hawthorn, "The case for OH suppression at near-infrared wavelengths," MNRAS 386, 47-64 (2008). [CrossRef]
  3. J. Bland-Hawthorn, M. Englund, and G. Edvell, "New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating," Opt. Express 12, 5902-5909 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5902. [CrossRef] [PubMed]
  4. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, "Multimode fiber devices with single-mode performance," Opt. Lett. 30, 2545-2547 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-19-2545. [CrossRef] [PubMed]
  5. J. Bland-Hawthorn and A. Horton, "Instruments without optics: an integrated photonic spectrograph," Proc. SPIE 6269, 62690N (2006). [CrossRef]
  6. J. Corbett, T. Butterley, and J. R. Allington-Smith, "Fibre modal power distributions in astronomy and their application to OH-suppression fibres," MNRAS 378, 482-492 (2007). [CrossRef]
  7. C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001). [CrossRef]
  8. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-21-1729. [CrossRef] [PubMed]
  9. Y. Cheng, K. Sugioka, and K. Midorikawa, "Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application," Opt. Express 13, 7225-7232 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7225. [CrossRef] [PubMed]
  10. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fibre coupling applications," Opt. Express 15, 11691-11697 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11691. [CrossRef] [PubMed]
  11. S.  Nolte, M.  Will, J.  Burghoff, and A.  Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A - Mater. 77, 109-111 (2003). [CrossRef]
  12. S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, "Telecom-band directional coupler written with femtosecond fiber laser," IEEE Photon. Technol. Lett. 18, 2174-2176 (2006). [CrossRef]
  13. Y. Cheng, H. L. Tsai, K. Sugioka, and K. Midorikawa, "Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining," Appl. Phys. A - Mater. 85, 11-14 (2006). [CrossRef]
  14. Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Opt. Express 12, 2120-2129 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2120. [CrossRef] [PubMed]
  15. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, "Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating," Opt. Lett. 33, 956-958 (2008), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-9-956. [CrossRef] [PubMed]
  16. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, "A 100 mW monolithic Yb waveguide laser fabricated using the femtosecond laser direct-write technique," (2008), http://arxiv.org/abs/0809.4550v1.
  17. Y. Nasu, M. Kohtoku, and Y. Hibino, "Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit," Opt. Lett. 30, 723-725 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-7-723. [CrossRef] [PubMed]
  18. S. M. Eaton, W. Chen, H. Zhang, R. Iyer, M. L. Ng, S. Ho, J. Li, J. S. Aitchison, and P. R. Herman, "Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths," J. Lightwave Technol. (to be published).
  19. M. Ams, G. D. Marshall, and M. J. Withford, "Study of the influence of femtosecond laser polarisation on direct writing of waveguides," Opt. Express 14, 13158-13163 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-13158. [CrossRef] [PubMed]
  20. L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, "Optical loss measurements in femtosecond laser written waveguides in glass," Opt. Commun. 259, 626-630 (2006). [CrossRef]
  21. Z. Wang, K. Sugioka, Y. Hanada, and K. Midorikawa, "Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing," Appl. Phys. A - Mater. 88, 699-704 (2007). [CrossRef]
  22. L. Ding, R. I. Blackwell, J. F. Künzler, and W. H. Knox, "Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers," Appl. Opt. 47, 3100-3108 (2008). [CrossRef] [PubMed]
  23. K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, "Formation of Si structure in glass with a femtosecond laser," Appl. Phys. A - Mater. 93, 183-188 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited