OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2731–2738

Highly versatile fiber-based optical Fabry-Pérot gas sensor

Jing Liu, Yuze Sun, and Xudong Fan  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2731-2738 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a versatile, compact, and sensitive fiber-based optical Fabry-Pérot (FP) gas sensor. The sensor probe is composed of a silver layer and a vapor-sensitive polymer layer that are sequentially deposited on the cleaved fiber endface, thus forming an FP cavity. The interference spectrum resulting from the reflected light at the silver-polymer and polymer-air interfaces changes when the polymer is exposed to gas analytes. This structure enables using any polymer regardless of the polymer refractive index (RI), which significantly enhances the sensor versatility. In experiments, we use polyethylene glycol (PEG) 400 (RI=1.465-1.469) and Norland Optical Adhesive (NOA) 81 (RI=1.53-1.56) as the gas sensing polymer and show drastically different sensor response to hexanol, methanol, and acetone. The estimated sensitivity for methanol vapor is 3.5 pm/ppm and 0.1 pm/ppm for PEG 400 and NOA 81, respectively, with a detection limit on the order of 1–10 ppm. Gas sensing for the analytes delivered in both continuous flow mode and pulsed mode is demonstrated.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(070.4790) Fourier optics and signal processing : Spectrum analysis
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.3990) Optical devices : Micro-optical devices
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 21, 2009
Revised Manuscript: February 4, 2009
Manuscript Accepted: February 4, 2009
Published: February 10, 2009

Jing Liu, Yuze Sun, and Xudong Fan, "Highly versatile fiber-based optical Fabry-Pérot gas sensor," Opt. Express 17, 2731-2738 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. P. Podgorsek and H. Franke, "Selective optical detection of aromatic vapors," Appl. Opt. 41, 601-608 (2002). [CrossRef] [PubMed]
  2. A. Ksendzov, M. L. Homer, and A. M. Manfreda, "Integrated optics ring-resonator chemical sensor with polymer transduction layer," Electron. Lett. 40, 63-65 (2004). [CrossRef]
  3. V. M. N. Passaro, F. Dell’Olio, and F. D. Leonardis, "Ammonia Optical Sensing by Microring Resonators," Sensors 7, 2741-2749 (2007). [CrossRef]
  4. Y. Sun and X. Fan, "Analysis of ring resonators for chemical vapor sensor development," Opt. Express 16, 10254-10268 (2008). [CrossRef] [PubMed]
  5. F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qu, and Z. Fang, "Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method," Sens. Actuators B 120, 610-614 (2007). [CrossRef]
  6. H. J. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998). [CrossRef]
  7. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, "High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water," Appl. Phys. Lett. 87, 234105 (2005). [CrossRef]
  8. B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999). [CrossRef]
  9. T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, "Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer," Opt. Lett. 32, 2523-2525 (2007). [CrossRef] [PubMed]
  10. T. Allsop, H. Dobb, V. Mezentsev, T. Earthgrowl, A. Gillooly, D. J. Webb, and I. Bennion, "The spectral sensitivity of long period gratings fabricated in elliptical core D-shaped optical fibre," Opt. Commun. 259, 537-544 (2006). [CrossRef]
  11. T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE Trans. Microwave Theory Tech. 82, 1612-1621 (1982). [CrossRef]
  12. V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997). [CrossRef] [PubMed]
  13. C. E. Lee and H. F. Taylor, "Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source," J. Lightwave Technol. 9, 129-134 (1991). [CrossRef]
  14. T. Valis, D. Hogg, and R. M. Measures, "Fiber optic Fabry-Perot strain gauge," IEEE Photon. Technol. Lett. 2, 227-228 (1990). [CrossRef]
  15. F. J. Arregui, Y. Liu, I. R. Matias, and R. O. Claus, "Optical fiber humidity sensor using a nano Fabry-Perot formed by the ionic self-assembly method," Sens. Actuators B 59, 54-59 (1999). [CrossRef]
  16. H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, "Single-Crystal Sapphire Fiber-Based Strain Sensor for High-Temperature Applications," J. Lightwave Technol. 21, 2276-2283 (2003). [CrossRef]
  17. G. Z. Xiao, A. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, "Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor," Sens. Actuators A. 118, 177-182 (2005). [CrossRef]
  18. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, "Optical fiber based absolute extrinsic Fabry - Perot interferometric sensing system," Meas. Sci. Technol. 7, 58-61 (1996). [CrossRef]
  19. Y. Zhang, X. Chen, Y. Wang, K. L. Cooper, and A. Wang, "Microgap Multicavity Fabry-Pérot Biosensor," J. Lightwave Technol. 25, 1797-1804 (2007). [CrossRef]
  20. X. Wang, K. L. Cooper, A. Wang, J. Xu, Z. Wang, Y. Zhang, and Z. Tu, "Label-free DNA sequence detection using oligonucleotide functionalized optical fiber," Appl. Phys. Lett. 89, 163901 (2006). [CrossRef]
  21. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, "Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index," Opt. Express 16, 2252-2263 (2008). [CrossRef] [PubMed]
  22. T. Wei, Y. Han, H.-L. Tsai, and H. Xiao, "Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser," Opt. Lett. 33, 536-538 (2008). [CrossRef] [PubMed]
  23. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, "Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining," Opt. Lett. 32, 3071-3073 (2007). [CrossRef] [PubMed]
  24. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, "Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser," Opt. Express 15, 14123-14128 (2007). [CrossRef] [PubMed]
  25. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, "Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement," Opt. Express 16, 5764-5769 (2008). [CrossRef] [PubMed]
  26. J. Zhang, M. Luo, H. Xiao, and J. Dong, "Interferometric study on the adsorption-dependent refractive index of silicatlite thin films grown on optical fibers," Chem. Mater. 18, 4-6 (2006). [CrossRef]
  27. F. J. Arregui, I. R. Matias, and R. O. Claus, "Optical fiber gas sensors based on hydrophobic alumina thin films formed by the electrostatic self-assembly monolayer process," IEEE Sens. J. 3, 56-61 (2003). [CrossRef]
  28. Y. Kang, H. Ruan, Y. Wang, F. J. Arregui, I. R. Matias, and R. O. Claus, "Nanostructured optical fiber sensors for breathing airflow monitoring," Meas. Sci. Technol. 17, 1207-1210 (2006). [CrossRef]
  29. T. Pustelny, E. Maciak, Z. Opilski, and M. Bednorz, "Optical interferometric structures for application in gas sensors," Opt. Appl. 37, 187-194 (2007).
  30. Z. Opilski, T. Pustelny, E. Maciak, M. Bednorz, A. Stolarczyk, and M. Jadamiec, "Investigations of optical interferometric structures applied in toxic gas sensors," B. Pol. Acad. Sci. Technical 53, 151-156 (2005).
  31. Y. S. Cheng, and K. L. Yeung, "Palladium-silver composite membranes by electroless plating technique," J. Mem. Sci. 158, 127-141 (1999). [CrossRef]
  32. Y. Sun, S. I. Shopova, G. Frye-Mason, and X. Fan, "Rapid chemical-vapor sensing using optofluidic ring resonators," Opt. Lett. 33, 788-790 (2008). [CrossRef] [PubMed]
  33. S.-S. Yun, K.-W. Jo, and J.-H. Lee, "Inline fiber optic chemical sensor using a self-aligned epoxy microbridge with a metal layer," IEEE J. Sel. Top. Quantum Electron. 13, 381-385 (2007). [CrossRef]
  34. S. I. Shopova, I. M. White, Y. Sun, H. Zhu, X. Fan, G. Frye-Mason, A. Thompson, and S.-j. Ja, "On-column micro gas chromatography detection with capillary-based optical ring resonators," Anal. Chem. 80, 2232-2238 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited