OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2797–2804

Large longitudinal electric fields (Ez ) in silicon nanowire waveguides

Jeffrey B. Driscoll, Xiaoping Liu, Saam Yasseri, Iwei Hsieh, Jerry I. Dadap, and Richard M. Osgood, Jr.  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2797-2804 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (645 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the presence of strong longitudinal electric fields (Ez ) in silicon nanowire waveguides through numerical computation. These waveguide fields can be engineered through choice of waveguide geometry to exhibit amplitudes as high as 97% that of the dominant transverse field component. We show even larger longitudinal fields created in free space by a terminated waveguide can become the dominant electric field component, and demonstrate Ez has a large effect on waveguide nonlinearity. We discuss the possibility of controlling the strength and symmetry of Ez using a dual waveguide design, and show that the resulting longitudinal field is sharply peaked beyond the diffraction limit.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.4310) Integrated optics : Nonlinear
(180.4243) Microscopy : Near-field microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Integrated Optics

Original Manuscript: November 14, 2008
Revised Manuscript: January 11, 2009
Manuscript Accepted: January 29, 2009
Published: February 11, 2009

Jeffrey B. Driscoll, Xiaoping Liu, Saam Yasseri, Iwei Hsieh, Jerry I. Dadap, and Richard M. Osgood, "Large longitudinal electric fields (Ez) in silicon nanowire waveguides," Opt. Express 17, 2797-2804 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Dorn, S. Quabis, and G. Leuchs, "Sharper Focus for a Radially Polarized Light Beam," Phys. Rev. Lett. 91, 233901 1-4 (2003). [CrossRef]
  2. H. P. Urbach and S. F. Pereira, "Field in Focus with a Maximum Longitudinal Electric Component," Phys. Rev. Lett. 100, 123904 1-4 (2008). [CrossRef]
  3. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000). [CrossRef]
  4. Q. Zhan and J. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2000).
  5. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001). [CrossRef]
  6. J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, "Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface" Science 272, 255-258 (1996). [CrossRef]
  7. L. Novotny, E. J. Sanchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998). [CrossRef]
  8. A. S. van de Nes, J. J. M. Braat, and S. F. Pereira, "High-density optical data storage," Rep. Prog. Phys. 69, 2323-2363 (2006). [CrossRef]
  9. M. O. Scully, "A Simple Laser Linac," Appl. Phys. B. 51, 238-241 (1990). [CrossRef]
  10. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal Field Modes Probed by Single Molecules," Phys. Rev. Lett. 86, 5251-5254 (2001). [CrossRef] [PubMed]
  11. G. Kihara Rurimo, M. Schardt, S. Quabis, S. Malzer, Ch. Dotzler,A. Winkler, G. Leuchs, G. H. Dohler, D. Driscoll, M. Hanson, A. C. Gossard, and S. F. Pereira, "Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam," J. Appl. Phys. 100, 023112 1-6 (2006). [CrossRef]
  12. Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Opt. Express 12, 3377-3382 (2004) [CrossRef] [PubMed]
  13. N. Destouches, B. Sider, A. V. Tishchenko, and O. Parriaux, "Optimization of a Waveguide Grating for Normal TM Mode Coupling," Opt. Quantum Electron. 38,123-131 (2006). [CrossRef]
  14. Y. Kozawa and S. Sato, "Observation of the longitudinal field of a focused laser beam by second-harmonic generation," J. Opt. Soc. Am. B 25, 175-179 (2008). [CrossRef]
  15. A. Boivin and E. Wolf, "Electromagnetic Field in the Neighborhood of the Focus of a Coherent Beam," Phys. Rev. 138, B1561-B1565 (1965). [CrossRef]
  16. M. Lax, W. H. Louisell, and W. B. McKnight, "From Maxwell to paraxial wave optics," Phys. Rev. A 11, 1365-1370 (1975). [CrossRef]
  17. V. G. Niziev and A. V. Nesterov, "Longitudinal fields in cylindrical and spherical modes," J. Opt. A: Pure Appl. Opt. 10, 085005 1-7 (2008). [CrossRef]
  18. K. Youngworth and T. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  19. X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006). [CrossRef]
  20. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006). [CrossRef] [PubMed]
  21. J. I. Dadap, N. C. Panoiu, X. Chen, I. Hsieh, X. Liu, C. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, Jr., "Nonlinear-optical phase modification in dispersion-engineered Si photonic wires," Opt. Express 16, 1280-1299 (2008). [CrossRef] [PubMed]
  22. M. Krause, H. Renner, and E. Brinkmeyer, "Optical isolation in silicon waveguides based on nonreciprocal Raman amplification," Elect. Lett. 44, 691-693 (2008). [CrossRef]
  23. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, "Full-vectorial mode calculations by finite difference method," IEE Proc. Optoelectron. 141, 281-286 (1994). [CrossRef]
  24. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004). [CrossRef] [PubMed]
  25. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2001).
  26. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  27. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, "Nonlinear silicon-on-insulator waveguides for all-optical signal processing," Opt. Express 15, 5976-5990 (2007). [CrossRef] [PubMed]
  28. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, "Evanescent-wave bonding between optical waveguides," Opt. Lett. 30, 3042-3044 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited