OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3063–3077

Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range

Claudia Brückner, Thomas Käsebier, Boris Pradarutti, Stefan Riehemann, Gunther Notni, Ernst-Bernhard Kley, and Andreas Tünnermann  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3063-3077 (2009)
http://dx.doi.org/10.1364/OE.17.003063


View Full Text Article

Enhanced HTML    Acrobat PDF (1491 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optimal structural parameters for an antireflective structure in high resistive float zone silicon are deduced for a rectangular and a hexagonal structure. For this the dependence of the effective index from the filling factor was calculated for both grating types. The structures were manufactured by the Bosch®-process. The required structural parameters for a continuous profile require an adaption of the fabrication process. Challenges are the depth and the slight positive slope of the structures. Starting point for the realization of the antireflective structures was the manufacturing of deep binary gratings. A rectangular structure and a hexagonal structure with period 50 μm and depth 500 μm were realized. Measurements with a THz time domain spectroscopy setup show an increase of the electric field amplitude of 15.2% for the rectangular grating and 21.76% for the hexagonal grating. The spectral analysis shows that the bandwidth of the hexagonal grating reaches from 0.1 to 2 THz.

© 2009 Optical Society of America

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 13, 2008
Revised Manuscript: December 15, 2008
Manuscript Accepted: January 14, 2009
Published: February 17, 2009

Citation
Claudia Brückner, Thomas Käsebier, Boris Pradarutti, Stefan Riehemann, Gunther Notni, Ernst-Bernhard Kley, and Andreas Tünnermann, "Broadband antireflective structures applied to high resistive float zone silicon in the THz spectral range," Opt. Express 17, 3063-3077 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3063


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  2. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, "Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon," J. Opt. Soc. Am. B 21, 1379-1386 (2004). [CrossRef]
  3. M. T. Reiten, S. A. Harmon, and R. A. Cheville, "Terahertz beam propagation measured through three-dimensional amplitude profile determination," J. Opt. Soc. Am. B 20, 2215-2225 (2003). [CrossRef]
  4. C. Brückner, B. Pradarutti, R. Müller, S. Riehemann, G. Notni, and A. Tünnermann, "Design and evaluation of a THz time domain imaging system using standard optical design software," Appl. Opt. 47, 4994-5006 (2008). [CrossRef] [PubMed]
  5. C. Brückner, B. Pradarutti, R. Müller, S. Riehemann, G. Notni, and A. Tünnermann, "Design and analysis of quasioptical THz time domain imaging systems," Proc. SPIE 7100, 71000S (2008). [CrossRef]
  6. A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yngvesson, "An anti-reflection coating for silicon optics at terahertz frequencies," IEEE Microwave Guided Wave Lett. 10, 264-266 (2000). [CrossRef]
  7. I. Hosako, "Multilayer optical thin films for use at terahertz frequencies: method of fabrication," Appl. Opt. 44, 3769-3773 (2005). [CrossRef] [PubMed]
  8. J. Kröll, J. Darmo, and K. Unterrainer, "Metallic wave-impedance matching layers for broadband terahertz optical systems," Opt. Express 15, 6552-6560 (2007). [CrossRef] [PubMed]
  9. W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, "Retrofittable antireflection coatings for T-rays," Microwave Opt. Technol. Lett. 49, 2267-2270 (2007). [CrossRef]
  10. P. B. Clapham and M. C. Hutley, "Reduction of lens reflection by the 'Moth Eye' principle," Nature 244, 281-282 (1973). [CrossRef]
  11. A. Gombert, B. Bläsi, C. Bühler, and P. Nitz, "Some application cases and related manufacturing techniques for optically functional microstructures on large areas," Opt. Eng. 43, 2525-2533 (2004). [CrossRef]
  12. C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, and A. Tünnermann, "Broadband antireflective surface-relief structure for THz optics," Opt. Express 15, 779-789 (2007). [CrossRef] [PubMed]
  13. H. Ibach and H. Lüth, Festkörperphysik (Springer, 2002).
  14. E. B. Grann, M. G. Moharam, and D. A. Pommet, "Optimal design for antireflective tapered two-dimensional subwavelength grating structures," J. Opt. Soc. Am. A 12, 333-339 (1995). [CrossRef]
  15. E. B. Grann, M. G. Moharam, and D. A. Pommet, "Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings," J. Opt. Soc. Am. A 11, 2695-2703 (1994). [CrossRef]
  16. P. Lalanne, and D. Lemercier-Lalanne, "Depth dependence of the effective properties of subwavelength gratings," J. Opt. Soc. Am. A 14, 450-458 (1997). [CrossRef]
  17. S. Rytov, "Electromagnetic Properties of a Finely Stratified Medium," Soviet Physics JETP 2, 466-475 (1956).
  18. P. Lalanne and D. Lemercier-Lalanne, "On the effective medium theory of subwavelength periodic structures," J. Mod. Opt. 43, 2063-2085 (1996). [CrossRef]
  19. H. Kikuta, Y. Ohira, H. Kubo, and K. Iwata, "Effective medium theory of two-dimensional subwavelength gratings in the non-quasi-static limit," J. Opt. Soc. Am. A 15, 1577-1585 (1998). [CrossRef]
  20. H. A. Macleod, Thin-film optical filters (Institute of Physics Publ, 2002).
  21. J. Bischoff and R. Brunner, "Numerical investigation of the resolution in solid immersion lens systems," Proc. SPIE 4099, 1-11 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited