OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3115–3123

Light beam coupling between standard single mode fibers and highly nonlinear photonic crystal fibers based on the fused biconical tapering technique

Jianguo Liu, Tee-Hiang Cheng, Yong-kee Yeo, Yixin Wang, Lifang Xue, Member, OSA, Zhaowen Xu, and Dawei Wang  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3115-3123 (2009)
http://dx.doi.org/10.1364/OE.17.003115


View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and experimentally demonstrate light beam coupling between a single-mode fiber (SMF) and a highly nonlinear photonic crystal fiber (HN-PCF) based on the fused biconical tapering (FBT) technique. In our experiment, a standard SMF is pre-tapered to match its propagation constant to that of a HN-PCF. In order to remove the condensation in the air holes, the temperature is increased gradually to preheat the fibers. An appropriate level of hydrogen flow is administered to avoid the air-hole collapse. As a result, coupling ratio exceeding 90% between the SMF and HN-PCF is achieved. This technique avoids back Fresnel reflection, mode-field diameter (MFD) mismatch and fiber-core misalignment, bubble generation and air-hole collapse in the interface fusion splice.

© 2009 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2310) Fiber optics and optical communications : Fiber optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 23, 2008
Revised Manuscript: November 18, 2008
Manuscript Accepted: December 3, 2008
Published: February 17, 2009

Citation
Jianguo Liu, Tee-Hiang Cheng, Yong-kee Yeo, Yixin Wang, Lifang Xue, Zhaowen Xu, and Dawei Wang, "Light beam coupling between standard single mode fibers and highly nonlinear photonic crystal fibers based on the fused biconical tapering technique," Opt. Express 17, 3115-3123 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Philip Russell, “Photonic Crystal Fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, P. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]
  3. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, “Improved large-mode-area endlessly single-mode photonic crystal fibers,” Opt. Lett. 28, 393–395 (2003). [CrossRef] [PubMed]
  4. J. C. Knight, J. Arriaga, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000). [CrossRef]
  5. A. Ferrando, E. Silvestre, P. Andrés, J. J. Miret, M. V. Andrés, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687–697 (2001), http://www.opticsinfobase.org/abstract.cfm?&uri=oe-9-13-687. [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]
  7. K. Saitoh, M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12, 2027–2032 (2004), http://www.opticsinfobase.org/abstract.cfm?&uri=oe-12-10-2027. [CrossRef] [PubMed]
  8. J. E. Sharping, M. Fiorentino, P. Kumar, R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27, 1675–1677 (2002). [CrossRef]
  9. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  10. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233–1235 (2001). [CrossRef]
  11. J. E. Sharping, M. Fiorentino, P. Kumar, R. S. Windeler, “All-optical switching based on cross-phase modulation in microstructure fiber,” IEEE Photon. Technol. Lett. 14, 77–79 (2002). [CrossRef]
  12. T. T. Larsen, J. Broeng, D. S. Hermann, A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electron. Lett. 39, 1719–1720 (2003). [CrossRef]
  13. W. J. Wadsworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, “Yb3+-doped photonic crystal fibre laser,” Electron. Lett. 36, 1452–1454 (2000). [CrossRef]
  14. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11, 48–53 (2003), http://www.opticsexpress.org/abstract.cfm?uri=OE-11-1-48. [CrossRef] [PubMed]
  15. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Engin. 41, 8–9 (2002). [CrossRef]
  16. L. Zou, X. Bao, S. Afshar V., L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29, 1485–1487 (2004). [CrossRef] [PubMed]
  17. T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003), http://www.opticsinfobase.org/abstract.cfm?&uri=oe-11-20-2589. [CrossRef] [PubMed]
  18. W. N. Macpherson, M. J. Gander, Mcbride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C Knight, P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193, 97–104 (2001). [CrossRef]
  19. C. Zhang, G. Kai, Z. Wang, T. Sun, C. Wang, Y. Liu, W. Zhang, J. Liu, S. Yuan, X. Dong, “Transformation of a transmission mechanism by filling the holes of normal silica-guiding microstructure fibers with nematic liquid crystal,” Opt. Lett. 30, 2372–2374 (2005). [CrossRef] [PubMed]
  20. Y. Zhu, P. Shum, H. -W. Bay, M. Yan, J. Hu, J. Hao, C. Lu, “Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber,” Opt. Lett. 30, 367–369 (2005). [CrossRef] [PubMed]
  21. B. Bourliaguet, C. Paré, F. Émond, A. Croteau, A. Proulx, R. Vallée, “Microstructured fiber splicing,” Opt. Express 11, 3412–3417 (2003), http://www.opticsexpress.org/abstract.cfm?uri=OE-11-25-3412. [PubMed]
  22. B. H. Park, J. Kim, U. C. Paek, B. H. Lee, “The optimum fusion splicing conditions for a large mode area photonic crystal fiber,” IEICE Trans. Electron. E88-C, 883–888 (2005). [CrossRef]
  23. A. D. Yablon, R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett. 17, 118–120 (2005). [CrossRef]
  24. R. Thapa, K. Knabe, K. L. Corwin, B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14, 9576–9583 (2006), http://www.opticsexpress.org/abstract.cfm?uri=OE-14-21-9576. [CrossRef] [PubMed]
  25. L. M. Xiao, W. Jin, M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32, 115–117 (2007). [CrossRef]
  26. J. C. Fajardo, M. T. Gallagher, Q. Wu, “Splice joint and process for joining a microstructured optical fiber and a conventional optical fiber,” U.S. Patent 20030081915A1 (2003).
  27. O. Frazão, J. P. Carvalho, H. M. Salgado, “Low-loss splice in a microstructured fibre using a conventional fusion splicer,” Microw. Opt. Technol. Lett. 46, 172–174 (2005). [CrossRef]
  28. H. Y. Tam, “Simple fusion splicing technique for reducing splicing loss between standard single mode fibres and erbium-doped fibre,” Electron. Lett. 27, 1597–1599 (1991). [CrossRef]
  29. J. H. Chong, M. K. Rao, Y. Zhu, P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photon. Technol. Lett. 15, 942–944 (2003). [CrossRef]
  30. J. H. Chong, M. K. Rao, “Development of a system for laser splicing photonic crystal fiber,” Opt. Express 11, 1365–1370 (2003), http://www.opticsexpress.org/abstract.cfm?uri=OE-11-12-1365. [CrossRef] [PubMed]
  31. S. G. Leon-Saval, T. A. Birks, N. Y. Joly, A. K. George, W. J. Wadsworth, G. Kakarantzas, P. St. J. Russell, “Splice-free interfacing of photonic crystal fibers,” Opt. Letters 30, 1629–1631 (2005). [CrossRef]
  32. Norbert Grote, Herbert Venghaus, Fibre Optic Communication devices ISBN 3-540-66977-9 (Springer-Verlag Berlin Heidlberg New York).
  33. B. S. Kawasaki, K. O. Hill, R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Opt. Lett.327–328 (1981). [CrossRef] [PubMed]
  34. J. B. Eom, D.S. Moon, U. C. Paek, B. H. Lee, “Fabrication and transmission characteristics of couplers using photonic crystal fibers,” OFC2002, 465–466 (2002)
  35. H. Kim, J. Kim, U.-C. Paek, B. Ha Lee, “Tunable photonic crystal fiber coupler based on a side-polishing technique,” Opt. Lett. 29, 1194–1196 (2004) [CrossRef] [PubMed]
  36. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, C.-L. Zhao, “Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect,” J. Lightwave Technol. 25, 3563–3574 (2007). [CrossRef]
  37. J. Liu, G. Kai, L. Xue, Z. Wang, Y. Liu, Y. Li, C. Zhang, T. Sun, X. Dong, “Modal cutoff properties in germanium-doped photonic crystal fiber,” Appl. Opt. 45, 2035–2038 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited