OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3514–3520

Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals

Feng Luan, Mark D. Pelusi, Michael R.E. Lamont, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3514-3520 (2009)
http://dx.doi.org/10.1364/OE.17.003514


View Full Text Article

Enhanced HTML    Acrobat PDF (481 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate broadband wavelength conversion of a 40 Gb/s return-to-zero signal using four-wave-mixing (FWM) in a dispersion engineered chalcogenide glass waveguide. The 6 cm long planar rib waveguide 2 μm wide was fabricated in a 0.87 μm thick film etched 350nm deep to correspond to a design where waveguide dispersion offsets the material leading to near-zero dispersion in the C-band and broadband phase matched FWM. The reduced dimensions also enhance the nonlinear coefficient to 9800 W-1km-1 at 1550 nm enabling broadband conversion in a shorter device. In this work, we demonstrate 80 nm wavelength conversions with 1.65 dB of power penalty at a bit-error rate of 10-9. Spectral measurements and simulations indicate extended broadband operation is possible.

© 2009 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.1150) Optical devices : All-optical devices
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

History
Original Manuscript: November 17, 2008
Revised Manuscript: February 2, 2009
Manuscript Accepted: February 18, 2009
Published: February 23, 2009

Citation
Feng Luan, Mark D. Pelusi, Michael R. E. Lamont, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton, "Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals," Opt. Express 17, 3514-3520 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Area Commun. 16, 1061-1073 (1998). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001).
  3. E. Ciaramella and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photonics Technol. Lett. 12, 849-851 (2000). [CrossRef]
  4. H. Simos, A. Bogris, and D. Syvridis, "Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier," J. Lightwave Technol. 22, 595-604 (2004). [CrossRef]
  5. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005). [CrossRef] [PubMed]
  6. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997). [CrossRef]
  7. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006). [CrossRef]
  8. V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007). [CrossRef] [PubMed]
  9. V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, "Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides," Opt. Express 15, 15047-15052 (2007). [CrossRef] [PubMed]
  10. M. R. Lamont, B. Luther-Davies, D-Y Choi, S. Madden, X. Gai, and B. J. Eggleton, "Net-gain from a parametric amplifier on a chalcogenide optical chip," Opt. Express  16, 20374-20381 (2008). [CrossRef] [PubMed]
  11. K. Inoue, "Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber," IEEE Photon. Technol. Lett. 13, 338-340 (2001). [CrossRef]
  12. A. Bogris and D. Syvridis, "Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers," J. Lightwave Technol. 21, 1892-1902 (2003). [CrossRef]
  13. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008). [CrossRef]
  14. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall November 1983)
  15. M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007). [CrossRef] [PubMed]
  16. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414-14421 (2007). [CrossRef] [PubMed]
  17. M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing," IEEE Photonics Technol. Lett. 19, 1496-1498 (2007). [CrossRef]
  18. M. A. Foster et al., "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Nature 441, 960, (2006) [CrossRef] [PubMed]
  19. J. Hansryd et al. "Wavelength tunable 40 GHz pulse source based on fibre optical parametric amplifier," Elect. Lett. 37, 584 (2001). [CrossRef]
  20. 1-to-40 Channel Multicasting in Wideband Parametric Amplifier," IEEE LEOS Winter Topicals, Sorrento Italy 1/2008
  21. J. M. Chavez Boggio et al. "730-nm optical parametric conversion from near- to short-wave infrared band," Opt. Express 16, 5435 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited