OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3835–3847

Optical performance and metallic absorption in nanoplasmonic systems

Matthew D. Arnold and Martin G. Blaber  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3835-3847 (2009)
http://dx.doi.org/10.1364/OE.17.003835


View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical metrics relating to metallic absorption in representative plasmonic systems are surveyed, with a view to developing heuristics for optimizing performance over a range of applications. We use the real part of the permittivity as the independent variable; consider strengths of particle resonances, resolving power of planar lenses, and guiding lengths of planar waveguides; and compare nearly-free-electron metals including Al, Cu, Ag, Au, Li, Na, and K. Whilst the imaginary part of metal permittivity has a strong damping effect, field distribution is equally important and thus factors including geometry, real permittivity and frequency must be considered when selecting a metal. Al performs well at low permittivities (e.g. sphere resonances, superlenses) whereas Au & Ag only perform well at very negative permittivities (shell and rod resonances, LRSPP). The alkali metals perform well overall but present engineering challenges.

© 2009 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optoelectronics

History
Original Manuscript: January 21, 2009
Revised Manuscript: February 23, 2009
Manuscript Accepted: February 24, 2009
Published: February 26, 2009

Citation
Matthew D. Arnold and Martin G. Blaber, "Optical performance and metallic absorption in nanoplasmonic systems," Opt. Express 17, 3835-3847 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3835


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  2. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, "Therapeutic possibilities of plasmonically heated gold nanoparticles," Trends Biotechnol. 24, 62-67 (2006). [CrossRef]
  3. D. Pissuwan, S. M. Valenzuela, C. M. Miller, and M. B. Cortie, "A Golden Bullet? Selective Targeting of Toxoplasma gondii Tachyzoites Using Antibody-Functionalized Gold Nanorods," Nano. Lett. 7, 3808-3812 (2007). [CrossRef] [PubMed]
  4. N. Engheta, A. Salandrino, and A. Alu, "Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors," Phys. Rev. Lett. 95, 095504-095504 (2005). [CrossRef] [PubMed]
  5. N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007). [CrossRef] [PubMed]
  6. Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano. Lett. 7, 403-408 (2007). [CrossRef] [PubMed]
  7. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, Berlin Heidelberg, 1995).
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, 1988).
  9. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, "Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy," Appl. Phys. Lett. 93, 113110-113113 (2008). [CrossRef]
  10. M. G. Blaber, M. D. Arnold, and M. J. Ford, "Optical properties of intermetallic compounds from first principles: a search for the ideal plasmonic material," J. Phys.: Condens Matter, to be published (2009). [CrossRef] [PubMed]
  11. J. H. Weaver and H. P. R. Frederikse, Optical properties of selected elements 82 ed. (CRC Press, Boca Raton, FL, 2001).
  12. T. Hagihara, Y. Hayashiuchi, and T. Okada, "Photoplastic effects in colored KCl single crystals containing potassium metal colloids. I. Preparation of specimens enriched with potassium metal colloids," Osaka Kyoiku Daigaku Kiyo, Dai-3-bumon: Shizen Kagaku, Oyo Kagaku 46, 49-56 (1997).
  13. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 2004).
  14. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004). [CrossRef] [PubMed]
  15. M. Blaber, N. Harris, M. J. Ford, and M. B. Cortie, "Optimisation of absorption efficiency for varying dielectric spherical nanoparticles," in International Conference on Nanoscience and Nanotechnology, 2006. ICONN '06, 2006),
  16. M. G. Blaber, M. D. Arnold, N. Harris, M. J. Ford, and M. B. Cortie, "Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold," Physica B 394, 184-187 (2007). [CrossRef]
  17. F. Wang and Y. R. Shen, "General Properties of Local Plasmons in Metal Nanostructures," Phys. Rev. Lett. 97, 206806 (2006). [CrossRef] [PubMed]
  18. U. Evra and D. J. Bergman, "Lifetime of nanoplasmonic states," in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 63240H-63212.
  19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003). [CrossRef] [PubMed]
  20. N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, "Tunable infrared absorption by metal nanoparticles: The case for gold rods and shells," Gold Bulletin 41, 5-14 (2008). [CrossRef]
  21. S. W. Prescott and P. Mulvaney, "Gold nanorod extinction spectra," J. Appl. Phys. 99, 123504-123507 (2006). [CrossRef]
  22. G. W. Bryant, I. Romero, F. J. G. de Abajo, and J. Aizpurua, "Simulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects," in Plasmonics: Metallic Nanostructures and their Optical Properties IV, (SPIE, 2006), 632313-632318.
  23. S. Asano and G. Yamamoto, "Light-Scattering by a Spheroidal Particle," Appl. Opt. 14, 29-49 (1975). [PubMed]
  24. R. Gans, "Ãœber die Form ultramikroskopischer Goldteilchen," Annalen der Physik 342, 881-900 (1912). [CrossRef]
  25. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  26. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007). [CrossRef]
  27. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  28. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455, 379 (2008). [CrossRef]
  29. Z. W. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007). [CrossRef] [PubMed]
  30. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  31. K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  32. M. D. Arnold and R. J. Blaikie, "Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs," Opt. Express 15, 11542-11552 (2007). [CrossRef] [PubMed]
  33. S. A. Ramakrishna and J. B. Pendry, "The asymmetric lossy near-perfect lens," J. Mod Opt. 49, 1747-1762 (2002). [CrossRef]
  34. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005). [CrossRef] [PubMed]
  35. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod Opt. 50, 1419-1430 (2003).
  36. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005). [CrossRef]
  37. D. O. S. Melville and R. J. Blaikie, "Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography," J. Opt. Soc. Am. B 23, 461-467 (2006). [CrossRef]
  38. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single-layer and multi-layer silver superlenses," J. Opt. Soc. Am. A 25, 911-918 (2008). [CrossRef]
  39. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13030-13042 (2006). [CrossRef] [PubMed]
  40. R. Buckley and P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007). [CrossRef] [PubMed]
  41. W. L. Barnes, "Surface plasmon-polariton length scales: a route to sub-wavelength optics," J. Opt. A, Pure Appl. Opt. 8, S87-S93 (2006). [CrossRef]
  42. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  43. R. Ruppin, "Electromagnetic energy density in a dispersive and absorptive material," Phys. Lett. A 299, 309-312 (2002). [CrossRef]
  44. S. I. Bozhevolnyi and T. Søndergaard, "General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators," Opt. Express 15, 10869-10877 (2007). [CrossRef] [PubMed]
  45. S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, New York, 2007).
  46. M. Fukui, T. Okamoto, T. Ogawa, M. Haraguchi, D. F. P. Pile, and D. K. Gramotnev, "Characteristics of plasmonic waveguides and nonlinear metallic particles," in Plasmonics: Nanoimaging, Nanofabrication, and their Applications II, (SPIE, 2006), 632401-632410.
  47. E. N. Economou, "Surface Plasmons in Thin Films," Phys. Rev. 182, 539 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited