OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 4177–4188

Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography

Yuankai K. Tao, Kristen M. Kennedy, and Joseph A. Izatt  »View Author Affiliations

Optics Express, Vol. 17, Issue 5, pp. 4177-4188 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1341 KB) ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate in vivo velocity-resolved, volumetric bidirectional blood flow imaging in human retina using single-pass flow imaging spectral domain optical coherence tomography (SPFI-SDOCT). This technique uses previously described methods for separating moving and non-moving scatterers within a depth by using a modified Hilbert transform. Additionally, a moving spatial frequency window is applied, creating a stack of depth-resolved images of moving scatterers, each representing a finite velocity range. The resulting velocity reconstruction is validated with and strongly correlated to velocities measured with conventional Doppler OCT in flow phantoms. In vivo velocity-resolved flow mapping is acquired in healthy human retina and demonstrate the measurement of vessel size, peak velocity, and total foveal blood flow with OCT.

© 2009 Optical Society of America

OCIS Codes
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Functional OCT

Original Manuscript: October 30, 2008
Revised Manuscript: February 10, 2009
Manuscript Accepted: February 26, 2009
Published: March 2, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics
Interactive Science Publishing Focus Issue: Optical Coherence Tomography (OCT) (2009) Optics Express

Yuankai K. Tao, Kristen M. Kennedy, and Joseph A. Izatt, "Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography," Opt. Express 17, 4177-4188 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-76 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367 [CrossRef] [PubMed]
  2. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-Resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-22 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404 [CrossRef] [PubMed]
  3. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, "Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system," Opt. Express 15, 1627-38 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1627 [CrossRef] [PubMed]
  4. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, "In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography," J. Biomed. Opt. 12, 0412151-8 (2007). [CrossRef]
  5. B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, "Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation," J. Biomed. Opt. 12, 0412141-8 (2007). [CrossRef]
  6. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-50 (2004). [CrossRef]
  7. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-21 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3116 [CrossRef] [PubMed]
  8. B. R. White, M. C. Pierce, N. A. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. De Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-7 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-25-3490 [CrossRef] [PubMed]
  9. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, "Three dimensional optical angiography," Opt. Express 15, 4083-97 (2007). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-4083 [CrossRef] [PubMed]
  10. L. An, and R. K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Opt Express 16, 11438-52 (2008) http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11438 [CrossRef] [PubMed]
  11. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-7-794 [CrossRef] [PubMed]
  12. Y. K. Tao, A. M. Davis, and J. A. Izatt, "Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform," Opt. Express 16, 12350-61 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-16-12350 [CrossRef] [PubMed]
  13. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Resonant Doppler flow imaging and optical vivisection of retinal blood vessels," Opt. Express 15, 408-22 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-408 [CrossRef] [PubMed]
  14. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time Domain Optical Coherence Tomography," Opt. Express 16, 6008-25 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6008 [CrossRef] [PubMed]
  15. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt Lett 32, 3453-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3453 [CrossRef] [PubMed]
  16. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-5 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-8-1861 [CrossRef] [PubMed]
  17. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 0541031-3 (2007).
  18. B. Baumann, M. Pircher, E. Gotzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-87 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13375 [CrossRef] [PubMed]
  19. L. An, and R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt Letters 32, 3423-5 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3423 [CrossRef]
  20. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-mu m spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-20 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8406 [CrossRef] [PubMed]
  21. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-96 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1487 [CrossRef] [PubMed]
  22. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-8 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-20-4822 [CrossRef] [PubMed]
  23. J. Zhang, J. S. Nelson, and Z. P. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-9 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-2-147 [CrossRef] [PubMed]
  24. J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology 190, 853-6 (1994). [PubMed]
  25. J. M. Rubin, "Power Doppler," Eur. Radiol. 9, S318-22 (1999) [CrossRef] [PubMed]
  26. J. M. Rubin, and R. S. Adler, "Power Doppler expands standard color capability," Diagn. Imaging 15, 66-9 (1993). [PubMed]
  27. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest Ophthalmol. Vis. Sci. OVS 26, 1124-32 (1985).
  28. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, "Cellular-Automata Method for Phase Unwrapping," J. Opt. Soc. Am. A 4, 267-80 (1987). http://www.opticsinfobase.org/abstract.cfm?URI=josaa-4-1-267 [CrossRef]
  29. R. L. Engerman, "Development of the macular circulation," Invest. Ophthalmol. 15, 835-40 (1976).
  30. P. Bagchi, "Mesoscale simulation of blood flow in small vessels," Biophysical J. 92, 1858-77 (2007) [CrossRef]
  31. J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, "Effect of erythrocyte aggregation on velocity profiles in venules," Am. J. Physiol. 280, H222-36 (2001).
  32. M. Sharan, and A. S. Popel, "A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall," Biorheology 38, 415-28 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited