OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 6 — Mar. 16, 2009
  • pp: 4324–4329

High-speed optical sampling using a silicon-chip temporal magnifier

Reza Salem, Mark A. Foster, Amy C. Turner-Foster, David F. Geraghty, Michal Lipson, and Alexander L. Gaeta  »View Author Affiliations

Optics Express, Vol. 17, Issue 6, pp. 4324-4329 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (900 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a single-shot technique for optical sampling based on temporal magnification using a silicon-chip time lens. We demonstrate the largest reported temporal magnification factor yet achieved (>500) and apply this technique to perform 1.3 TS/s single-shot sampling of ultrafast waveforms and to 80-Gb/s performance monitoring. This scheme offers the potential of developing a device that can transform GHz oscilloscopes into instruments capable of measuring signals with THz bandwidths.

© 2009 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.7370) Optical devices : Waveguides
(320.7100) Ultrafast optics : Ultrafast measurements
(250.4745) Optoelectronics : Optical processing devices

ToC Category:
Ultrafast Optics

Original Manuscript: January 13, 2009
Revised Manuscript: February 20, 2009
Manuscript Accepted: February 23, 2009
Published: March 3, 2009

Reza Salem, Mark A. Foster, Amy C. Turner-Foster, David F. Geraghty, Michal Lipson, and Alexander L. Gaeta, "High-speed optical sampling using a silicon-chip temporal magnifier," Opt. Express 17, 4324-4329 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. van Kampen, C. Jozsa, J. T. Kohlhepp, P. LeClair, L. Lagae, W. J. M. deJonge, and B. Koopmans, "All-optical probe of coherent spin waves," Phys. Rev. Lett.  88, 227201-1-4 (2002). [CrossRef] [PubMed]
  2. R. W. Schoenlein, W. Z. Lin, and J. G. Fujimoto, "Femtosecond studies of nonequilibrium electronic processes in metals," Phys. Rev. Lett. 58, 1680-1683 (1987). [CrossRef] [PubMed]
  3. M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97-105 (2007). [CrossRef]
  4. C. Dorrer, "High-speed measurements for optical telecommunication systems," IEEE J. Sel. Top. Quantum Electron. 12, 843-858 (2006). [CrossRef]
  5. N. Yamada, H. Ohta, and S. Nogiwa, "Polarization-insensitive optical sampling system using two KTP crystals," IEEE Photon. Technol. Lett. 16, 215-217 (2004). [CrossRef]
  6. M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High-performance optical-fiber-nonlinearity-based optical waveform monitoring," J. Lightwave Technol. 20, 2012-2022 (2005). [CrossRef]
  7. J. Li, M. Westlund, H. Sunnerud, B.-E. Olsson, M. Karlsson, and P. A. Andrekson, "0.5-Tb/s eye-diagram measurement by optical sampling using XPM-induced wavelength shifting in highly nonlinear fiber," IEEE Photon. Technol. Lett. 16, 566-568 (2004). [CrossRef]
  8. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthold, and P. J. Winzer, "Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology," J. Lightwave Technol. 23, 178-186 (2005). [CrossRef]
  9. J.-H. Chung and A. M. Weiner, "Real-time detection of femtosecond optical pulse sequences via time-to-space conversion in the lightwave communications band," J. Lightwave Technol. 21, 3323-3333 (2003). [CrossRef]
  10. Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005). [CrossRef]
  11. P. C. Sun, Y. T. Mazurenko, and Y. Fainman, "Femtosecond pulse imaging: ultrafast optical oscilloscope," J. Opt. Soc. Am. A 14, 1159-1170 (1997). [CrossRef]
  12. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008). [CrossRef] [PubMed]
  13. C. Dorrer, J. Bromage, and J. D. Zuegel, "High-dymanic-range single-shot cross-correlator based on an optical pulse replicator," Opt. Express 16, 13534-13544 (2008). [CrossRef] [PubMed]
  14. K.-L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Photon. Technol. Lett.,  10, 397-399 (1998). [CrossRef]
  15. J. Chou, O. Boyraz, B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007). [CrossRef]
  16. C. Dorrer, "Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning," Opt. Lett. 31, 540-542 (2006). [CrossRef] [PubMed]
  17. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, "Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation," Sov. Phys. Usp. 29, 642-677 (1986). [CrossRef]
  18. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994). [CrossRef]
  19. M. T. Kauffman, W. C. Banyal, A. A. Godil, and D. M. Bloom, D. M. "Time-to-frequency converter for measuring picosecond optical pulses," Appl. Phys. Lett. 64, 270-272 (1994). [CrossRef]
  20. J. van Howe and C. Xu, "Ultrafast optical signal processing based upon space-time dualities," J. Lightwave Technol. 24, 2649-2662 (2006). [CrossRef]
  21. C. V. Bennett and B. H. Kolner, "Principles of parametric temporal imaging - Part I: System configurations," IEEE J. Quantum Electron. 36, 430-437 (2000). [CrossRef]
  22. C. V. Bennett, R. P. Scott, and B. H. Kolner, "Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope," Appl. Phys. Lett. 65, 2513-2515 (1994). [CrossRef]
  23. C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, "640 GHz real-time recording using temporal imaging," Conference on Lasers and Electro-Optics, OSA Technical Digest CD, paper CtuA6 (2008).
  24. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Optical time lens based on four-wave mixing on a silicon chip," Opt. Lett. 33, 1047-1049 (2008). [CrossRef] [PubMed]
  25. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005). [CrossRef] [PubMed]
  26. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, and M. Paniccia, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721-11726 (2006). [CrossRef] [PubMed]
  27. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006). [CrossRef] [PubMed]
  28. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007). [CrossRef] [PubMed]
  29. A. C. Turner, M. A. Foster, B. S. Schmidt, A. L. Gaeta, and M. Lipson, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006). [CrossRef] [PubMed]
  30. J. Azana and M. A. Muriel, "Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings," IEEE J. Quantum Electron. 36, 517-526 (2000). [CrossRef]
  31. Y. Han and B. Jalali, "Time-bandwidth product of the photonic time stretch analog-to-digital converter," IEEE Trans. Microwave Theory Tech. 51, 1886-1892 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited