OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5391–5401

Temporal focusing with spatially modulated excitation

Eirini Papagiakoumou, Vincent de Sars, Valentina Emiliani, and Dan Oronb  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5391-5401 (2009)
http://dx.doi.org/10.1364/OE.17.005391


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Temporal focusing of ultrashort pulses has been shown to enable wide-field depth-resolved two-photon fluorescence microscopy. In this process, an entire plane in the sample is selectively excited by introduction of geometrical dispersion to an ultrashort pulse. Many applications, such as multiphoton lithography, uncaging or region-of-interest imaging, require, however, illumination patterns which significantly differ from homogeneous excitation of an entire plane in the sample. Here we consider the effects of such spatial modulation of a temporally focused excitation pattern on both the generated excitation pattern and on its axial confinement. The transition in the axial response between line illumination and wide-field illumination is characterized both theoretically and experimentally. For 2D patterning, we show that in the case of amplitude-only modulation the axial response is generally similar to that of wide-field illumination, while for phase-and-amplitude modulation the axial response slightly deteriorates when the phase variation is rapid, a regime which is shown to be relevant to excitation by beams shaped using spatial light modulators. Finally, general guidelines for the use of spatially modulated temporally focused excitation are presented.

© 2009 Optical Society of America

OCIS Codes
(090.1995) Holography : Digital holography
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: December 23, 2008
Revised Manuscript: February 10, 2009
Manuscript Accepted: February 13, 2009
Published: March 20, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Eirini Papagiakoumou, Vincent de Sars, Valentina Emiliani, and Dan Oron, "Temporal focusing with spatially modulated excitation," Opt. Express 17, 5391-5401 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5391


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nature Photonics 2, 219-225 (2008). [CrossRef]
  3. X. Lv, C. Zhan, S. Zeng,W. R. Chen, and Q. Luo, "Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector," Rev. Sci. Intr. 77, 046101 (2006) and refernces therein. [CrossRef]
  4. G. D. Reddy, K. Kelleher, R. Fink, and P. Saggau, "Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity," Nature Neuroscience 11, 713-720 (2008). [CrossRef]
  5. B. Judkewitz, A. Roth, and M. Hausser, "Dendritic enlightenment: using patterned two-photon uncaging to reveal the secrets of the brain’s smallest dendrites," Neuron 50, 180-183 (2006) [CrossRef] [PubMed]
  6. A. H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, "Real-time two-photon absorption microscopy using multipoint excitation," J. Microsc. 192, 217-226 (1998). [CrossRef]
  7. J. Bewersdorf, R. Pick, and S. W. Hell, "Multifocal multiphoton microscopy," Opt. Lett. 23, 655-657 (1998) [CrossRef]
  8. D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, "Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy," Opt. Express 7, 273-279 (2000). [CrossRef] [PubMed]
  9. T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, "High efficiency beam splitter for multifocal multiphoton microscopy," J. Microsc. 201, 368-376 (2001). [CrossRef] [PubMed]
  10. V. Nikolenko, K. E. Poskanzer, and R. Yuste, "Two-photon photostimulation and imaging of neural circuits," Nat. Methods 4, 943-950 (2007). [CrossRef] [PubMed]
  11. C. Lutz, T. S. Otis, V. de Sars, S. Charpak, D. A. DiGregorio, and V. Emiliani, "Holographic photolysis of caged neurotransmitters," Nat. Methods 5, 821-827 (2008) [CrossRef]
  12. D. Oron, E. Tal, and Y. Silberberg, "Scanningless depth resolved microscopy," Opt. Express 13, 1468-1476 (2005). [CrossRef] [PubMed]
  13. E. Tal, D. Oron, and Y. Silberberg, "Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing," Opt. Lett. 30, 1686-1688 (2005). [CrossRef] [PubMed]
  14. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, "Simultaneous spatial and temporal focusing of femtosecond pulses," Opt. Express 13, 2153-2159 (2005). [CrossRef] [PubMed]
  15. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, "Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses," Opt. Express 16, 22039-22047 (2008). [CrossRef] [PubMed]
  16. J.W. Goodman, Introduction to Fourier Optics, third edition (Roberts and Company, Greenwood Village, 2005).
  17. D. Oron and Y. Silberberg, "Harmonic generation with temporally focused ultrashort pulses," J. Opt. Soc. Am. B 22, 2660-2663 (2005). [CrossRef]
  18. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, "Real-time two-photon confocal microscopy using a femtosecond, amplified, Ti:Sapphire system," J. Microsc. 181, 253-259 (1995). [CrossRef]
  19. C. Ventalon and J. Mertz, "Quasi-confocal fluorescence sectioning with dynamic speckle illumination," Opt. Lett. 30, 3350-3352 (2005). [CrossRef]
  20. E. Tal and Y. Silberberg, "Transformation from an ultrashort pulse to a spatiotemporal speckle by a thin scattering surface," Opt. Lett. 31, 3529-3531 (2006). [CrossRef] [PubMed]
  21. D. Oron and Y. Silberberg, "Spatiotemporal coherent control using shaped, temporally focused pulses," Opt. Express 13, 9903-9908 (2005). [CrossRef] [PubMed]
  22. H. Suchowski, D. Oron, and Y. Silberberg, "Generation of a dark nonlinear focus by spatiotemporal coherent control," Opt. Commun. 264, 482-487 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited