OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5446–5456

Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors

Tero Jalkanen, Vicente Torres-Costa, Jarno Salonen, Mikko Bjürkqvist, Ermei Mökilö, Jose Manuel Martinez-Duart, and Vesa-Pekka Lehto  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5446-5456 (2009)
http://dx.doi.org/10.1364/OE.17.005446


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the present work, porous silicon (PS) based Bragg reflectors are fabricated, and the reactive PS surface is passivated by means of thermal carbonization (TC) by acetylene decomposition. The gas sensing properties of the reflectors are studied with different gas compositions and concentrations.Based on the results it can be concluded that thermally carbonized Bragg reflectors provide an easy and inexpensive means to produce chemically stable high quality PS reflectors with good gas sensing properties, which differ from those of unpassivated PS reflectors.

© 2009 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(230.1480) Optical devices : Bragg reflectors
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Detectors

History
Original Manuscript: January 7, 2009
Revised Manuscript: March 16, 2009
Manuscript Accepted: March 17, 2009
Published: March 20, 2009

Citation
Tero Jalkanen, Vicente Torres-Costa, Jarno Salonen, Mikko Björkqvist, Ermei Mäkilä, Jose Manuel Martínez-Duart, and Vesa-Pekka Lehto, "Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors," Opt. Express 17, 5446-5456 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5446


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990). [CrossRef]
  2. L. M. Peter, D. J. Ripley, and R. I. Wielgosz, "In-situ monitoring of internal surface-area during the growth of porous silicon," Appl. Phys. Lett. 66, 2355-2357 (1995). [CrossRef]
  3. H. Munder, C. Andrzejak, M. G. Berger, T. Eickhoff, H. Luth, W. Theiss, U. Rossow, W. Richter, R. Herino, and M. Ligeon, "Optical characterization of porous silicon layers formed on heavily p-doped substrates," Appl. Surf. Sci. 6, 56-58 (1992).
  4. L. T. Canham, "Bioactive silicon structure fabrication through nanoetching techniques," Adv. Mater. 7, 1033-1037 (1995). [CrossRef]
  5. R. B. Bjorklund, S. Zangooie, and H. Arwin, "Color changes in thin porous silicon films caused by vapor exposure," Appl. Phys. Lett. 69, 3001-3003 (1996). [CrossRef]
  6. V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous silicon-based optical interferometric biosensor," Science 278, 840-843 (1997). [CrossRef] [PubMed]
  7. R. C. Anderson, R. S. Muller, and C. W. Tobias, "Investigations of porous silicon for vapor sensing," Sens. Actuators A 21-23, 835-839 (1990).
  8. C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, "Optical properties of porous silicon films," Thin Solid Films 125, 157-163 (1985). [CrossRef]
  9. G. Vincent, "Optical properties of porous silicon superlattices," Appl. Phys. Lett. 64, 2367-2369 (1994). [CrossRef]
  10. M. G. Berger, C. Dieker, M. Thonissen, L. Vescan, H. Luth, H. Munder, W. Theiss, M. Wernke, and P. Grosse, "Porosity superlattices: a new class of Si heterostructures," J. Phys. D 27, 1333-1336 (1994). [CrossRef]
  11. V. Torres-Costa, R. J. Martın-Palma, and J. M. Martınez-Duart, "Optical characterization of porous silicon films and multilayer filters," Appl. Phys. A 79, 1919-1923 (2004). [CrossRef]
  12. P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, "Vapor sensing using the optical properties of porous silicon bragg mirrors," J. Appl. Phys. 86, 1781-1784 (1999). [CrossRef]
  13. M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, "Sensing of chemical vapor using a porous multilayer prepared from lightly doped silicon," Phys. Status Solidi C 4, 2073-2077 (2007). [CrossRef]
  14. M. G. Berger, R. Arens-Fischer, M. Thonissen, M. Kruger, S. Billat, H. Luth, S. Hillbrich, W. Theiss, and P. Grosse, "Dielectric filters made of PS: advanced performance by oxidation and new layer structures," Thin Solid Films 297, 237-240 (1997). [CrossRef]
  15. M. Kruger, S. Hilbrich, M. Thonissen, D. Scheyen, W. Theiss, and H. Luth, "Suppression of ageing effects in porous silicon interference filters," Opt. Commun. 146, 309-315 (1998). [CrossRef]
  16. J. Chapron, S. A. Alekseev, V. Lysenko, V. N. Zaitsev, and D. Barbier, "Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red rugate filters," Sens. Actuators B 120, 706-711 (2007). [CrossRef]
  17. M. S. Salem, M. J. Sailor, F. A. Harraz, T. Sakka, and Y. H. Ogata, "Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds," J. Appl. Phys. 100, Art. No. 083520 (2006). [CrossRef]
  18. V. Torres-Costa, J. Salonen, V-P. Lehto, R. J. Martın-Palma, and J. M. Martınez-Duart, "Passivation of nanostructured silicon optical devices by thermal carbonization," Microporous Mesoporous Mater. 111, 636-638 (2008). [CrossRef]
  19. V. Torres-Costa, R. J. Martın-Palma, J. M. Martınez-Duart, J. Salonen, and V-P. Lehto, "Effective passivation of porous silicon optical devices by thermal carbonization," J. Appl. Phys. 103, Art. No. 083124 (2008). [CrossRef]
  20. J. Salonen, V.-P. Lehto, M. Bjorkqvist, E. Laine, and L. Niinisto, "Studies of thermally-carbonized porous silicon surfaces," Phys. Status Solidi A 182, 123-126 (2000). [CrossRef]
  21. J. Salonen, E. Laine, and L. Niinisto, "Thermal carbonization of porous silicon surface by acetylene," J. Appl. Phys. 91, 456-461 (2002). [CrossRef]
  22. J. Salonen, M. Bjorkqvist, E. Laine, and L. Niinisto, "Stabilization of porous silicon surface by thermal decomposition of acetylene," Appl. Surf. Sci. 225, 389-394 (2004). [CrossRef]
  23. M. Bj¨orkqvist, J. Salonen, J. Paaski, and E. Laine, "Characterization of thermally carbonized porous silicon humidity sensor," Sens. Actuators A 112, 244-247 (2004). [CrossRef]
  24. M. Bjorkqvist, J. Salonen, E. Laine, and L. Niinisto, "Comparison of stabilizing treatments on porous silicon for sensor applications," Phys. Status Solidi A 197, 374-377 (2003). [CrossRef]
  25. CRC Handbook of Chemistry and Physics 88th edition, D. R. Lide, ed., (CRC Press/Taylor and Francis, Boca Raton, FL, 2007-2008).
  26. J. McMurry, in: Organic Chemistry (5th edition), (Thomson Brooks/Cole,2000).
  27. H. A. Macleod, in: Thin-film optical filters (Second edition), (Adam Hilger Ltd, Bristol, 1986), chap. 5.
  28. V. Torres-Costa, J. Salonen, T. Jalkanen, V-P. Lehto, R. J. Martın-Palma, and J. M. Martınez-Duart, "Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity," Phys. Status Solidi A, 1-3 (2009)/DOI 10.1002/pssa.200881052.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited