OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5481–5489

Wire-grid polarizers in the volume plasmon region

Anni Lehmuskero, Benfeng Bai, Pasi Vahimaa, and Markku Kuittinen  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5481-5489 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The properties of silver and aluminium wire-grid polarizers are examined in the volume plasmon frequency region where the transmittances of field with polarizations parallel and perpendicular to the grid lines are reversed with respect to their behavior outside the plasma region. Analysis of the behavior is conducted with effective approximate refractive index formulae and by simulations with rigorous Fourier modal method. The parallel polarization behaves as in a homogenous thin metal film while the perpendicular field is absorbed in the plasma region and transmitted otherwise. We further explain the performance by viewing the distribution of the field intensities inside the grating.

© 2009 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(230.5440) Optical devices : Polarization-selective devices
(050.2065) Diffraction and gratings : Effective medium theory
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: January 2, 2009
Revised Manuscript: February 27, 2009
Manuscript Accepted: February 28, 2009
Published: March 23, 2009

Anni Lehmuskero, Benfeng Bai, Pasi Vahimaa, and Markku Kuittinen, "Wire-grid polarizers in the volume plasmon region," Opt. Express 17, 5481-5489 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Bird and M. Parrish, "The wire grid as a near-infrared polarizer," J. Opt. Soc. Am. 50, 886-891 (1960). [CrossRef]
  2. J. B. Young, H. A. Graham, and E. W. Peterson, "Wire grid infrared polarizer," Appl. Opt. 4, 1023-1026, (1965). [CrossRef]
  3. C. Pentico, E. Gardner, D. Hansen, and R. Perkins, "New, high performance, durable polarizers for projection displays," SID Int. Symp. Digest Tech. Papers 32, 1287-1289, (2001). [CrossRef]
  4. L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, "Large flexible nanowire grid visible polarizer made by nanoimprint lithography," Appl. Phys. Lett. 90, 063111, (2007). [CrossRef]
  5. D. Pines, "Collective energy losses in solids," Rev. Mod. Phys. 28, 184-199 (1956). [CrossRef]
  6. R. H. Ritchie, E. T. Arakawa, J. J. Kowan, and R. N. Hamm, "Surface plasmon resonance effect in grating diffraction," Phys. Rev. Let. 21, 1530-1533 (1968). [CrossRef]
  7. F. J. García-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Ríos, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999). [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  9. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source," Nano Lett. 7, 2784-2788 (2007). [CrossRef] [PubMed]
  10. J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003). [CrossRef] [PubMed]
  11. S. E. Maier, Plasmonics: Fundamentals and Applications (Springer Science+Business Media LLC, New York, 2007).
  12. edited by M. L. Brongersma and P. G. Kik Surface Plasmon Nanophotonics (Springer, Dordrecht, 2007). [CrossRef]
  13. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-402 (1902).
  14. M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, "Inverse metalstripe polarizers," Appl. Phys. B 68, 81-85 (1999). [CrossRef]
  15. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces," J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  16. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001). [CrossRef]
  17. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Plasmon polaritons in a metallic photonic crystal slab," Phys. Stat. Solidi C 0, 1393-1396 (2003). [CrossRef]
  18. E. A. Taft and H. R. Phillip, "Optical constants of silver," Phys. Rev. 121, 1100-1103 (1961). [CrossRef]
  19. F. Wooten, Optical Properties of Solids (Academic press, New York, 1972).
  20. ed-in-chief D. R. Lide, Handbook of Chemistry and Physics, 85th edit. (CRC Press, Boca Raton, 2005).
  21. M. Kuittinen, J. Turunen, and P. Vahimaa, "Subwavelength-structured elements" in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Cambridge university press, New York, 1998).
  22. J. Turunen, "Diffraction theory of microrelief gratings" in Micro-Optics, Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997).
  23. P. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784, (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited