OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5502–5516

Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide

Minming Geng, Lianxi Jia, Lei Zhang, Lin Yang, Ping Chen, Tong Wang, and Yuliang Liu  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5502-5516 (2009)
http://dx.doi.org/10.1364/OE.17.005502


View Full Text Article

Enhanced HTML    Acrobat PDF (1654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We designed and fabricated a four-channel reconfigurable optical add-drop multiplexer based on silicon photonic wire waveguide controlled through thermo-optic effect. The effective footprint of the device is about 1000×500 μm2. The minimum insertion loss is about 10.7 dB and the tuning bandwidth about 17 nm. The average tuning power efficiency is about 6.187 mW/nm and the tuning speed about 24.4 kHz. The thermo-optic polarization-rotation effect is firstly reported in this paper.

© 2009 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

History
Original Manuscript: January 12, 2009
Revised Manuscript: February 27, 2009
Manuscript Accepted: March 2, 2009
Published: March 23, 2009

Citation
Minming Geng, Lianxi Jia, Lei Zhang, Lin Yang, Ping Chen, Tong Wang, and Yuliang Liu, "Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide," Opt. Express 17, 5502-5516 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5502


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. P. Earnshaw, A. Griffin, C. Bolle, and J. B. D. Soole, "Reconfigurable optical add-drop multiplexer (ROADM) with integrated sub-band optical cross-connect", in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OTuD2, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2005-OTuD2.
  2. W. L. Chen, Z. H. Zhu, Y. J. Chen, J. Sun, B. Grek, and K. Schmidt, "Monolithically integrated 32 four-channel client reconfigurable optical add/drop multiplexer on planar lightwave circuit", IEEE Photon.Technol. Lett. 15, 1413-1415 (2003). [CrossRef]
  3. M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, A. Wong-Foy, and J. Soole, "Planar lightwave circuit based reconfigurable optical add-drop multiplexer architectures and reusable subsystem module", IEEE J. Sel. Top. Quantum Electron. 11, 313-321 (2005). [CrossRef]
  4. M. P. Earnshaw, M. Cappuzzo, E. Chen, L. Gomez, A. Griffin, E. Laskowski, and A. Wong-Foy, "Reconfigurable optical add-drop multiplexer (ROADM) with full add and drop path cross connect", in Conference on Integrated Photonics Research, Technical Digest (CD) (Optical Society of America, 2004), paper IThA2, http://www.opticsinfobase.org/abstract.cfm?URI=IPR-2004-IThA2.
  5. T. Goh, T. Kitoh, M. Kohtoku, M. Ishii, T. Mizuno, and A. Kaneko, "Port scalable PLC-based wavelength selective switch with low extension loss for multi-degree ROADM/WXC", in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2008), paper OWC6, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWC6.
  6. F. Xiao, B. Juswardy, and K. Alameh, "Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors", Opt. Express 16, 11703-11708 (2008). [CrossRef] [PubMed]
  7. A. V. Tran, W. D. Zhong, R. S. Tucker, and K. Song, "Reconfigurable multichannel optical add-drop multiplexers incorporating eight-port optical circulators and fiber Bragg gratings", IEEE Photon.Technol. Lett. 13, 1100-1102 (2001). [CrossRef]
  8. E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, "Reconfigurable optical add-drop multiplexer using microring resonators", IEEE Photon. Technol. Lett.,  17, 2358-2360 (2005). [CrossRef]
  9. H. Yamada, T. Chu, S. Nakamura, Y. Urino, S. Ishida, and Y. Arakawa, "Silicon photonic-wire waveguide devices", Proc. SPIE 6477, 647709-1-9 (2007).
  10. T. Barwicz, M. A. Popovic, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, "Reconfigurable silicon photonic circuits for telecommunication applications", Proc. SPIE 6872, 68720Z-1-12 (2008).
  11. C. Pu, L. Lin, E. Goldstein, and R. Tkach, "Client-configurable eight-channel optical add/drop multiplexer using micromachining technology", IEEE Photon. Technol. Lett. 12, 1665-1667 (2000). [CrossRef]
  12. M. Muha, B. Chiang, and R. Schleicher, "MEMS based channelized ROADM platform", in National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2008), paper JthA24, http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2008-JThA24.
  13. N. A. Riza and S. Yuan, "Reconfigurable wavelength add-drop filtering based on a Banyan network topology and ferroelectric liquid crystal fiber-optic switches", J. Lightwave Technol. 17, 1575-1584 (1999). [CrossRef]
  14. P. Evans, G. Baxter, H. Zhou, D. Abakoumov, S. Poole, and S. Frisken, "LCOS-based WSS with true integrated channel monitor for signal quality monitoring applications in ROADMS", in National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2008), paper OWC3, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWC3.
  15. W. Bogaerts, P. Dumon, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, D. van Thourhout, D. Taillaert, B. Luyssaert, and R. Baets, "Silicon-on-insulator nanophotonics", Proc. SPIE 5956, 59560R-1-15, (2005)
  16. R. Soref, "The past, present, and future of silicon photonics", IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006). [CrossRef]
  17. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology", IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005). [CrossRef]
  18. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system", IEICE Trans. Electron.E 87-C, 351-358 (2004).
  19. W. Bogaerts, V. Wiaux, P. Dumon, D. Taillaert, J. Wouters, S. Beckx, J. van Campenhout, B. Luyssaert, D. van Thourhout, and R. Baets, "Large-scale production techniques for photonic nanostructures", Proc. SPIE 5335, 101-112 (2003). [CrossRef]
  20. J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J. Polastre, K. Sakuma, R. Sirdeshmukh, E. J. Sprogis, S. M. Sri-Jayantha, A. M. Stephens, A. W. Topol, C. K. Tsang, B. C. Webb, and S. L. Wright, "Three dimensional silicon integration", IBM J. Res. and Dev. 52, 553-569, (2008). [CrossRef]
  21. Y. Vlasov, "Silicon photonics for next generation computing systems", in Proceedings of IEEE Conference on European Conference of Optical Communications (Brussels, Belgium, 2008), http://www.ecoc2008.org/documents/SC2_Vlasov.pdf.
  22. S. F. Preble, Q. F. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip", Opt. Lett. 30, 2891-2893 (2005). [CrossRef] [PubMed]
  23. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator", Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  24. A. Cabas, M. Di Muri, S. Doneda, P. Galli, S. Ghidini, F. Giacometti, S. Lorenzotti, G. Mutinati A. Nottola, M. Romagnoli, S. Sardo, L. Socci, T. Tomasi, G. Zuliani, M. Gentili G. Grasso, and M. Romagnoli, "Silicon on insulator based integrated tunable add and drop filter for metro DWDM networks", in Proceedings of IEEE Conference on International Conference on Transparent Optical Networks (Rome, Italy, 2007), pp. 236-239. [CrossRef]
  25. S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion", Opt. Express 15, 14765-14771 (2007). [CrossRef] [PubMed]
  26. S. J. Xiao, M. H. Khan, H. Shen, and M. H. Qi, "Multiple-channel silicon micro-resonator based filters for WDM applications", Opt. Express 15, 7489-7498 (2007). [CrossRef] [PubMed]
  27. J. Lee, S. Park, and G. Kim, "Multichannel silicon WDM ring filters fabricated with DUV lithography", Opt. Commun. 281, 4302-4306 (2008). [CrossRef]
  28. Y. Vlasov, W. M. J. Green, and F. N. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks", Nature Photonics 2, 242-246 (2008). [CrossRef]
  29. F. N. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on chip optical interconnects", Opt. Express,  15, 11934-11941 (2007). [CrossRef] [PubMed]
  30. F. N. Xia, M. O’Boyle, L. Sekaric, and Y. A. Vlasov, "Compact wavelength multiplexers/demultiplexers using photonic wires on silicon-on-insulator (SOI) substrate", in Proceedings of IEEE Conference on International Conference on Indium Phosphide and Related Materials Conference Proceedings (Princeton Univ, Princeton, New Jersey, 2006), pp. 429-430. [PubMed]
  31. M. Lipson, "Switching and modulating light on silicon", Proc. SPIE 5730, 102-113 (2005). [CrossRef]
  32. S. J. Chang, C. Y. Ni, Z. P. Wang, Y. J. Chen, "A compact and low power consumption optical switch based on microrings", IEEE Photon. Technol. Lett. 20, 1021-1023 (2008). [CrossRef]
  33. H. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, "1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators rabricated on silicon substrate", IEEE Photon. Technol. Lett. 19, 704-706 (2007). [CrossRef]
  34. F. N. Xia, L. Sekaric, and Y. Vlasov, "Ultra-compact optical buffers on a silicon chip", Nature Photonics 1, 65-71 (2006). [CrossRef]
  35. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters", J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  36. A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators bandpass filters for WDM systems", J. Lightwave Technol. 20, 296-303 (2002). [CrossRef]
  37. S. J. Emelett and R. A. Soref, "Synthesis of dual-microring-resonator crossconnect filters", Opt. Express 13,4439-4456 (2005). [CrossRef] [PubMed]
  38. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, "Filter synthesis for periodically coupled microring resonators", Opt. Lett. 25, 344-346 (2000). [CrossRef]
  39. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, "FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators", J. Lightwave Technol. 15, 2154-2165 (1997). [CrossRef]
  40. M. M. Geng, L. X. Jia, L. Zhang, Y.L. Liu, L. Yang, and F. Li, "Design and fabrication of polarization-independent micro-ring resonators", Chin. Phys. Lett. 25,1333-1335 (2008). [CrossRef]
  41. O. Schwelb, "Crosstalk and bandwidth of lossy microring add/drop multiplexers", Opt. Commun. 265,175-179 (2006). [CrossRef]
  42. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides", Opt. Express 12,90-103 (2004). [CrossRef] [PubMed]
  43. H. Jia and K. Yasumot, "S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section", IEEE Antennas and Wireless Propagation Letters 3, 41-44 (2004). [CrossRef]
  44. W. Chen, W. L. Chen, and Y. J. Chen, "A characteristic matrix approach for analyzing resonant ring lattice devices", IEEE Photon. Technol. Lett. 16, 458-460 (2004). [CrossRef]
  45. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon", IEEE J. Quantum Electron. 23, 123-129 (1987). [CrossRef]
  46. L. Yang, Y. L. Liu, Y. Cheng, W. Wang, and Q. M. Wang, "Fabrication of thermooptic variable optical attenuators based on multimode interference coupler principle", Opt. Eng. Lett. 42, 606-607 (2003).
  47. F.  Gan, T.  Barwicz, M. A.  Popovic, M. S.  Dahlem, C. W.  Holzwarth, P. T.  Rakich, H. I.  Smith, E. P.  Ippen, and F. X.  Kärtner, "Maximizing the thermo-optic tuning range of silicon photonic structures", in Proceeding of IEEE Conference on Photonics in Switching (San Francisco, CA, 2007), pp. 67-68.
  48. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides", Jpn. J. Appl. Phys. 43, 646-647 (2004). [CrossRef]
  49. W. Bogaerts, P. Dumon, D. van Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides", Opt. Lett. 32, 2801-2803 (2007). [CrossRef] [PubMed]
  50. F. Xu and A. W. Poon, "Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings", Opt. Express 16, 8649-8657 (2008). [CrossRef] [PubMed]
  51. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, "Polarization-transparent microphotonic devices in the strong confinement limit", Nature Photonics 1, 57-60 (2007). [CrossRef]
  52. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres", Electron. Lett. 38, 1669-1670 (2002). [CrossRef]
  53. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction", Opt. Lett. 26, 1888-1890 (2001). [CrossRef]
  54. T. Tsuchizawa, T. Watanabe, E. Tamechika, T. Shoji, K. Yamada, J. Takahashi, S. Uchiyama, S. Itabashi, and H. Morita, "Fabrication and evaluation of submicron-square Si wire waveguides with spot-size converters", in Proceedings of IEEE Annual Meeting of Lasers and Electro-Optics Society (Glasgow, Scotland, 2002), pp. 287-288. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited