OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5585–5594

Automated focusing of nuclei for time lapse experiments on single cells using holographic optical tweezers

Emma Eriksson, David Engström, Jan Scrimgeour, and Mattias Goksör  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5585-5594 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Experiments on single cells are currently gaining more and more interest. Single cell studies often concerns the spatio-temporal distribution of fluorescent proteins inside living cells, visualized using fluorescence microscopy. In order to extract quantitative information from such experiments it is necessary to image the sample with high spatial and temporal resolution while keeping the photobleaching to a minimum. The analysis of the spatial distribution of proteins often requires stacks of images at each time point, which exposes the sample to unnecessary amounts of excitation light. In this paper we show how holographic optical tweezers combined with image analysis can be used to optimize the axial position of trapped cells in an array in order to bring the nuclei into a single imaging plane, thus eliminating the need for stacks of images and consequently reducing photobleaching. This allows more images to be collected, as well as increasing the time span and/or the time resolution in time lapse studies of single cells.

© 2009 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(170.1530) Medical optics and biotechnology : Cell analysis
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(180.2520) Microscopy : Fluorescence microscopy
(230.6120) Optical devices : Spatial light modulators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: February 27, 2009
Revised Manuscript: March 18, 2009
Manuscript Accepted: March 20, 2009
Published: March 24, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Emma O. Eriksson, David Engström, Jan Scrimgeour, and Mattias Goksör, "Automated focusing of nuclei for time lapse experiments on single cells using holographic optical tweezers," Opt. Express 17, 5585-5594 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Longo and J. Hasty, "Dynamics of single-cell gene expression," Mol. Syst. Biol. 2, 64 (2006). [CrossRef] [PubMed]
  2. D. Di Carlo and L. P. Lee, "Dynamic single-cell analysis for quantitative biology," Anal. Chem. 78, 7918-7925 (2006). [CrossRef] [PubMed]
  3. K. Sott, E. Eriksson, E. Petelenz, and M. Goksor, "Optical systems for single cell analyses," Expert Opin. Drug Discov. 3, 1323-1344 (2008). [CrossRef]
  4. M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, "Stochastic gene expression in a single cell," Science 297, 1183-1186 (2002). [CrossRef] [PubMed]
  5. J. M. Raser and E. K. O’Shea, "Control of stochasticity in eukaryotic gene expression," Science 304, 1811-1814 (2004). [CrossRef] [PubMed]
  6. N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, "Bacterial persistence as a phenotypic switch," Science 305, 1622-1625 (2004). [CrossRef] [PubMed]
  7. L. Cai, C. K. Dalal, and M. B. Elowitz, "Frequency-modulated nuclear localization bursts coordinate gene regulation," Nature 455, 485-490 (2008). [CrossRef] [PubMed]
  8. V. Starkuviene and R. Pepperkok, "The potential of high-content high-throughput microscopy in drug discovery," B. J. Pharmacol. 152, 62-71 (2007). [CrossRef]
  9. D. Petranovic, and J. Nielsen, "Can yeast systems biology contribute to the understanding of human disease?," Trends Biotechnol. 26, 584-590 (2008). [CrossRef] [PubMed]
  10. Y. Shav-Tal, R. H. Singer, and X. Darzacq, "Imaging gene expression in single living cells," Nat. Rev. Mol. Cell Biol. 5, 855-862 (2004). [CrossRef] [PubMed]
  11. H. Zhang and K. K. Liu, "Optical tweezers for single cells," J. R. Soc. Interface 5, 671-690 (2008). [CrossRef] [PubMed]
  12. H. A. Svahn and A. van den Berg, "Single cells or large populations?," Lab Chip 7, 544-546 (2007). [CrossRef] [PubMed]
  13. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000). [CrossRef]
  14. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  15. G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, "Laserguided assembly of heterotypic three-dimensional living cell microarrays," Biophys. J. 91, 3465-3473 (2006). [CrossRef] [PubMed]
  16. P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab Chip 5, 1224-1228 (2005). [CrossRef] [PubMed]
  17. E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, "Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes," SPIE Proc. 6592, P5920-9 (2007).
  18. U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, "Live cell lithography: Using optical tweezers to create synthetic tissue," Lab Chip 8, 2174-2181 (2008). [CrossRef] [PubMed]
  19. E. Eriksson, J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes," Lab Chip 7, 71-76 (2007). [CrossRef]
  20. V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, "Wave front engineering for microscopy of living cells," Opt. Express 13, 1395-1405 (2005). [CrossRef] [PubMed]
  21. S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, "High-speed high-resolution imaging of intercellular immune synapses using optical tweezers," Biophys. J. 95, L66-L68 (2008). [CrossRef] [PubMed]
  22. To make the hologram calculation more efficient, the algorithm was modified to update the trap intensities for all traps in a specific axial plane simultaneously, rather than looping through the number of traps individually. To achieve trapping patterns with high uniformity of the trap intensities, the number of iterations was also increased.
  23. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, "Interactive approach to optical tweezers control," Appl. Opt. 45, 897-903 (2006). [CrossRef] [PubMed]
  24. A. Gordon, A. Colman-Lerner, T. E. Chin, K. R. Benjamin, R. C. Yu, and R. Brent, "Single-cell quantification of molecules and rates using open-source microscope-based cytometry," Nat. Methods 4, 175-181 (2007). [CrossRef] [PubMed]
  25. G. Volpe, G. P. Singh, and D. Petrov, "Dynamics of a growing cell in an optical trap," Appl. Phys. Lett. 88, 231106 (2006). [CrossRef]
  26. J. E. Curtis, C. H. J. Schmitz, and J. P. Spatz, "Symmetry dependence of holograms for optical trapping," Opt. Lett. 30, 2086-2088 (2005). [CrossRef] [PubMed]
  27. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited