OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5595–5605

Planar designs for electromagnetically induced transparency in metamaterials

Philippe Tassin, Lei Zhang, Thomas Koschny, E. N. Economou, and C. M. Soukoulis  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5595-5605 (2009)
http://dx.doi.org/10.1364/OE.17.005595


View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a planar design of a metamaterial exhibiting electromagnetically induced transparency that is amenable to experimental verification in the microwave frequency band. The design is based on the coupling of a split-ring resonator with a cut-wire in the same plane. We investigate the sensitivity of the parameters of the transmission window on the coupling strength and on the circuit elements of the individual resonators, and we interpret the results in terms of two linearly coupled Lorentzian resonators. Our metamaterial designs combine low losses with the extremely small group velocity associated with the resonant response in the transmission window, rendering them suitable for slow light applications at room temperature.

© 2009 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: March 5, 2009
Revised Manuscript: March 20, 2009
Manuscript Accepted: March 21, 2009
Published: March 24, 2009

Citation
Philippe Tassin, Lei Zhang, Thomas Koschny, E. N. Economou, and C. M. Soukoulis, "Planar designs for electromagnetically induced transparency in metamaterials," Opt. Express 17, 5595-5605 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5595


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004). [CrossRef] [PubMed]
  2. D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging," J. Opt. Soc. Am. B 23, 391-403 (2006). [CrossRef]
  3. T. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005). [CrossRef]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  5. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, "Negative-Index Materials: New Frontiers in Optics," Adv. Mater. 18, 1941-1952 (2006). [CrossRef]
  6. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  7. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  8. N. Engheta, "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Ant. Wireless Prop. Lett. 1, 10-13 (2002). [CrossRef]
  9. P. Kockaert, P. Tassin, G. Van der Sande, I. Veretennicoff, and M. Tlidi, "Negative diffraction pattern dynamics in nonlinear cavities with left-handed materials," Phys. Rev. A 74, 033822 (2006). [CrossRef]
  10. A. Alu, N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative and low index metamaterials and their electromagnetic applications," IEEE Trans. Antennas Propag. 49, 23-36 (2007).
  11. P. Tassin, X. Sahyoun, and I. Veretennicoff, "Miniaturization of photonic waveguides by the use of left-handed materials," Appl. Phys. Lett. 92, 203111 (2008). [CrossRef]
  12. U. Leonhardt and T. G. Philbin, "Transformation Optics and the Geometry of Light," Prog. Opt., in press (2008). http://arxiv.org/abs/0805.4778v2
  13. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  14. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  15. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations," Photon. Nanostruct.: Fundam. Applic. 6, 87 (2008). [CrossRef]
  16. S. Guenneau, A. Movchan, G. P’etursson, and S. A. Ramakrishna, "Acoustic metamaterials for sound focusing and confinement," New J. Phys. 9, 399 (2007). [CrossRef]
  17. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  18. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric Coupling to the Electric Resonance of Split-Ring Resonators," Appl. Phys. Lett. 84, 2943-2945 (2004). [CrossRef]
  19. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective Medium Theory of Left-handed Materials," Phys. Rev. Lett. 93, 107402 (2004). [CrossRef] [PubMed]
  20. J. Garcia-Garcia, F. Martin, J. D. Baena, R. Marques, and L. Jelink, "On the resonances and polarizabilities of split-ring resonators," J. Appl. Phys. 98, 033103 (2005). [CrossRef]
  21. F. Bilotti, A. Toscano, and L. Vegni, "Design of Spiral and Multiple Split-Ring Resonators for the Realization of Miniaturized Metamaterial Samples," IEEE Trans. Antennas Propag. 55, 2258-2267 (2007). [CrossRef]
  22. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006). [CrossRef] [PubMed]
  23. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007). [CrossRef]
  24. C. M. Soukoulis, S. Linden, and M. Wegener, "Negative index metamaterials at optical wavelengths," Science 315, 47-49 (2007). [CrossRef] [PubMed]
  25. P. Gay-Balmaz and O. J. F. Martin, "Electromagnetic Resonances in Individual and Coupled Split-ring Resonators," J. Appl. Phys. 92, 2929-2936 (2002). [CrossRef]
  26. R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express 16, 18131-18144 (2008). [CrossRef] [PubMed]
  27. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-Induced Transparency in Metamaterials," Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]
  28. N. Liu, S. Kaiser, T. Pfau, and H. Giessen, "Electromagnetically Induced Transparency in Optical Metamaterials," presented at the QELS Postdeadline Session II of CLEO/QELS, San Jose, California, USA, 2008.
  29. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low Loss Metamaterials Based on Classical Electromagnetically Induced Transparency," Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]
  30. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "A metamaterial analog of electromagnetically induced transparency," Phys. Rev. Lett. 101, 253903 (2008). [CrossRef] [PubMed]
  31. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  32. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005). [CrossRef]
  33. C. Caloz and T. Itoh, "Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications" (Wiley, New Jersey, 2005).
  34. A. Figotin and I. Vitebskiy, "Slow light in photonic crystals," in Waves in Random and Complex Media (Taylor and Francis, London, 2006) Vol. 16. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited