OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5736–5742

Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling

Tuan Guo, Hwa-Yaw Tam, Peter A. Krug, and Jacques Albert  »View Author Affiliations

Optics Express, Vol. 17, Issue 7, pp. 5736-5742 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel in-fiber structure for power-referenced refractometry with the capability to measure surrounding refractive index (SRI) as low as 1.33 is proposed and demonstrated. A short optical fiber stub containing a weakly tilted Bragg grating is spliced to another fiber with a large lateral offset. The reflection from this structure occurs in two well-defined wavelength bands, the Bragg reflected core mode and the cladding modes. The cladding modes reflect different amounts of power as the SRI changes, while the core-mode reflection from the same weakly tilted FBG remains unaffected by the SRI. The power reflected in the core mode band can be used as a reliable reference to cancel out any possible power fluctuations. The proposed refractometer with improved sensitivity for low SRI measurement together with the tip-reflection sensing feature, is a good candidate for sensing in chemical and biological applications.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 2, 2009
Revised Manuscript: March 19, 2009
Manuscript Accepted: March 20, 2009
Published: March 25, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Tuan Guo, Hwa-Yaw Tam, Peter A. Krug, and Jacques Albert, "Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling," Opt. Express 17, 5736-5742 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Y. Shevchenko and J. Albert, "Plasmon resonances in gold-coated tilted fiber Bragg gratings," Opt. Lett. 32, 211-213 (2007). [CrossRef] [PubMed]
  2. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, "Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings," Appl. Opt. 46, 5456-5460 (2007). [CrossRef] [PubMed]
  3. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," App. Phys. Lett. 86, 151122 (2005). [CrossRef]
  4. X. F. Chen, K. M. Zhou, L. Zhang, and I. Bennion, "Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber," IEEE Photon. Technol. Lett. 17, 664-666 (2005).
  5. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High sensitivity evanescent field fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005). [CrossRef]
  6. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, "Thinned fiber Bragg gratings as refractive index sensors," IEEE Sens. J. 5, 1288-1295 (2005). [CrossRef]
  7. M. C. P. Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J. M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, "Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement," Meas. Sci. Technol. 17, 992-997 (2006). [CrossRef]
  8. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, "Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer," Opt. Lett. 32, 2390-2392 (2007). [CrossRef]
  9. M. C. P. Huy, G. Laffont, V. Dewynter, P. Ferdinand, L. Labonté, D. Pagnoux, P. Roy, W. Blanc, and B. Dussardier, "Tilted Fiber Bragg Grating photowritten in microstructured optical fiber for improved refractive index measurement," Opt. Express 14, 10360-10370 (2006).
  10. G. Laffont and P. Ferdinand, "Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry," Meas. Sci. Technol. 12, 765-770 (2001). [CrossRef]
  11. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, "Optical fiber refractometer using narrowband cladding-mode resonance shifts," Appl. Opt. 46, 1142-1149 (2007). [CrossRef] [PubMed]
  12. M. Kežmah and D. Ðonlagic´, "Multimode all-fiber quasi-distributed refractometer sensor array and cross-talk mitigation," Appl. Opt. 46, 4081-4091 (2007). [CrossRef] [PubMed]
  13. H. J. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," J. Lightwave Technol. 16, 1606-1612 (1998). [CrossRef]
  14. I. D. Villar, I. R. Matias, and F. J. Arregui, "Enhancement of sensitivity in long-period fiber gratings with deposition of low-refractive index materials," Opt. Lett. 30, 2363-2365 (2005). [CrossRef] [PubMed]
  15. L. Rindorf and O. Bang, "Highly sensitive refractometer with a photonic-crystal-fiber long-period grating," Opt. Lett. 33, 563-565 (2008). [CrossRef] [PubMed]
  16. Q. Wang and G. Farrell, "All-fiber multimode-interference-based refractometer sensor: proposal and design," Opt. Lett. 31, 317-319 (2006). [CrossRef] [PubMed]
  17. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Opt. Lett. 32, 3080-3082 (2007). [CrossRef] [PubMed]
  18. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, "An embedded optical nanowire loop resonator refractometric sensor," Opt. Express 16, 1062-1067 (2008). [CrossRef] [PubMed]
  19. T. Guo, C. Chen, A. Laronche, and J. Albert, "Power-referenced and temperature-calibrated optical fiber refractometer," IEEE Photon. Technol. Lett. 20, 635-637 (2008). [CrossRef]
  20. T. Guo, A. Ivanov, C. Chen, and J. Albert, "Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling," Opt. Lett. 33, 1004-1007 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited