OSA's Digital Library

Optics Express

Optics Express

  • Vol. 17, Iss. 7 — Mar. 30, 2009
  • pp: 5743–5757

Optical guiding of absorbing nanoclusters in air

Vladlen G. Shvedov, Anton S. Desyatnikov, Andrei V. Rode, Wieslaw Krolikowski, and Yuri S. Kivshar  »View Author Affiliations


Optics Express, Vol. 17, Issue 7, pp. 5743-5757 (2009)
http://dx.doi.org/10.1364/OE.17.005743


View Full Text Article

Enhanced HTML    Acrobat PDF (1402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We suggest a novel approach in all-optical trapping employing a photophoretic force for manipulation of absorbing particles in open air. We demonstrate experimentally the robust three-dimensional guiding, over the distances of a few millimeters, of agglomerates of carbon nanoparticles with the size spanned from 100 nm to 10μm, as well as their acceleration up to velocities of 1 cm/sec. We achieve stable positioning and guiding of particles as well as simultaneous trapping of a large number of particles in a dual beam optical trap created by two counter-propagating and co-rotating optical vortex beams.

© 2009 Optical Society of America

OCIS Codes
(160.4236) Materials : Nanomaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(260.6042) Physical optics : Singular optics

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: March 12, 2009
Revised Manuscript: March 17, 2009
Manuscript Accepted: March 18, 2009
Published: March 25, 2009

Citation
Vladlen G. Shvedov, Anton S. Desyatnikov, Andrei V. Rode, Wieslaw Krolikowski, and Yuri S. Kivshar, "Optical guiding of absorbing nanoclusters in air," Opt. Express 17, 5743-5757 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5743


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin, "Applications of Laser Radiation Pressure," Science 210, 1081-1088 (1980). [CrossRef] [PubMed]
  3. K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008). [CrossRef] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  5. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  6. A. Ashkin and J. M. Dziedzic, "Optical Trapping and Manipulation Of Viruses and Bacteria," Science 235, 1517-1520 (1987). [CrossRef] [PubMed]
  7. A. Ashkin, J. M. Dziedzic, and T. Yamane, "Optical Trapping and Manipulation Of Single Cells Using Infrared-Laser Beams," Nature 330, 769-771 (1987). [CrossRef] [PubMed]
  8. K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994). [CrossRef] [PubMed]
  9. M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophot. 2, 021875 (2008). [CrossRef]
  10. K. C. Neuman, T. Lionnet, and J.-F. Allemand, "Single-Molecule Micromanipulation Techniques," Annu. Rev. Mater. Res. 37,33-67 (2007). [CrossRef]
  11. S. Chu, "The manipulation of neutral particles," in Nobel Lectures, Physics 1996-2000 (Ed. G. Ekspong, World Sc. Pub. Co., 2002), pp. 122-158.
  12. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, and N. R. Heckenberg, "Optical trapping of absorbing particles," Adv. Quantum Chem. 30, 469-492 (1998). [CrossRef]
  13. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003). [CrossRef] [PubMed]
  14. D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewara, and S. Anand, "Optical manipulation of airborne particles: techniques and applications," Faraday Discuss. 137, 335-350 (2008). [CrossRef] [PubMed]
  15. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena, (Springer, 2002), pp. 780-785.
  16. Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, ed. D. L. Andrews (Elsevier, Academic Press, 2008). [PubMed]
  17. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  18. G. C. Spalding, J. Courtial, and R. Di Leonardo, "Holographic Optical Trapping," pp. 139-168 in Ref. [16].
  19. K. Dholakia and P. J. Reece, "Near-field optical micromanipulation," pp. 107-138 in Ref. [16].
  20. A. Ashkin and J. M. Dziedzic, "Optical Levitation by Radiation Pressure," Appl. Phys. Lett. 19, 283-285 (1971). [CrossRef]
  21. R. Omori, T. Kobayashi, and A. Suzuki, "Observation of a single-beam gradient-force optical trap for dielectric particles in air," Opt. Lett. 22, 816-818 (1997). [CrossRef] [PubMed]
  22. M. D. Summers, J. P. Reid, and D. McGloin, "Optical guiding of aerosol droplets," Opt. Express 14, 6373-6380 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6373. [CrossRef] [PubMed]
  23. D. R. Burnham and D. McGloin, "Holographic optical trapping of aerosol droplets," Opt. Express 14, 4175-4181 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-4175. [CrossRef] [PubMed]
  24. G. Roosen and C. Imbert, "Optical levitation by means of two horizontal laser beams: a theoretical and experimental study," Phys. Lett. 59A, 6 (1976).
  25. N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, "Optical Trapping of a Growing Water Droplet in Air," J. Phys. Chem. B 107, 39883990 (2003). [CrossRef]
  26. M. Guillon, O. Moine, and B. Stout, "Longitudinal Optical Binding of High Optical Contrast Microdroplets in Air," Phys. Rev. Lett. 96, 143902 (2006). [CrossRef] [PubMed]
  27. K. Taji, M. Tachikawa, and K. Nagashima, "Laser trapping of ice crystals," Appl. Phys. Lett. 88, 141111 (2006). [CrossRef]
  28. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867-1869 (1993). [CrossRef] [PubMed]
  29. R. G. Gauthier and A. Frangioudakis, "Optical levitation particle delivery system for a dual beam fiber optic trap," Appl. Opt. 39, 26-33 (2000). [CrossRef]
  30. D. Rudd, C. Lopez-Mariscal, M. Summers, A. Shahvisi, J. C. Gutirrez-Vega, and D. Mc-Gloin, "Fiber based optical trapping of aerosols," Opt. Express 16, 14550-14560 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14550. [CrossRef] [PubMed]
  31. D. M. Gherardi, A. E. Carruthers, T. Cizmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fiber trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008). [CrossRef]
  32. K. T. Gahagan and G. A. Swartzlander, Jr., "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  33. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, "Trapping and manipulation of lowindex particles in a two-dimensional interferometric optical trap," Opt. Lett. 26863-865 (2001). [CrossRef]
  34. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994). [CrossRef] [PubMed]
  35. H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23, 216-218 (1998). [CrossRef]
  36. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Optical trapping of a metal particle and a water droplet by a scanning laser beam," Appl. Phys. Lett. 60, 807-809 (1992). [CrossRef]
  37. G. Roosen and C. Imbert, "The TEM.01 mode laser beam - a powerful tool for optical levitation of various types of spheres," Opt. Commun. 26, 432 (1978). [CrossRef]
  38. S. Sato, Y. Harada, and Y. Waseda, "Optical trapping of microscopic metal particles," Opt. Lett. 19, 1807 (1994). [CrossRef] [PubMed]
  39. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms," J. Mod. Opt. 42, 217 (1995). [CrossRef]
  40. R. Dimova, H. Polaert, and B. Pouligny, "Absorbing microspheres in water: laser radiation pressure and hydrodynamic forces," in Scattering of Shaped Light Beams and Applications, Eds. G. Gouesbet and G. Grehan (Research signpost, Trivandrum, INDE 2000) pp. 45-65.
  41. J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. London A 336, 165 (1974). [CrossRef]
  42. M. S. Soskin and M. V. Vasnetsov, "Singular Optics," Prog. Opt. 42, 219-276 (Ed. E. Wolf, Elsevier, 2001). [CrossRef]
  43. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 - 8189 (1992). [CrossRef] [PubMed]
  44. Optical Angular Momentum, Eds. L. Allen, S. M. Barnett, and M. J. Padgett (Bristol, IOP Publ. 2003) pp. 314
  45. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593 (1996). [CrossRef] [PubMed]
  46. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett. 23, 1-3 (1998). [CrossRef]
  47. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997). [CrossRef] [PubMed]
  48. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, "Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam," Phys. Rev. Lett. 88, 053601 (2002). [CrossRef] [PubMed]
  49. H. He, M. E. Freise, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826 (1995). [CrossRef] [PubMed]
  50. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998). [CrossRef]
  51. J. E. Curtis and D. G. Grier, "Structure of Optical Vortices," Phys. Rev. Lett. 90, 133901 (2003). [CrossRef] [PubMed]
  52. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the Transfer of the Local Angular Momentum Density of a Multiringed Light Beam to an Optically Trapped Particle," Phys. Rev. Lett. 91, 093602 (2003). [CrossRef] [PubMed]
  53. K. Sakai and S. Noda, "Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser," Electron. Lett. 43, 107-108 (2007). [CrossRef]
  54. F. Ehrenhaft, "On the physics of millionths of centimeters," Phys. Z. 18, 352-368 (1917).
  55. R. W. Lawson, "Photophoresis," Nature 103, 514 (1919). [CrossRef]
  56. O. Preining, "Photophoresis," in Aerosol Sciences Ed. C. N. Davies (Academic Press, N. Y. 1966), pp. 111-135.
  57. M. Lewittes, S. Arnold, and G. Oster, "Radiometric levitation of micron sized spheres," Appl. Phys. Lett. 40, 455-457 (1982). [CrossRef]
  58. G. M. Hidy and J. R. Broc, "Photophoresis and the descent of particles into the lower stratosphere," J. Geophys. Res. 72, 455 (1967). [CrossRef]
  59. G. T. Best and T. N. L. Patterson, "The capture of small absorbing particles by the solar radiation field," Planet. Space Sci. 9, 801-809 (1962). [CrossRef]
  60. A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, "Gravito-photophoresis and aerosol stratification in the atmosphere," J. Aerosol Sci. 36, 1277-1299 (2005). [CrossRef]
  61. G. Wurm and O. Krauss, "Experiments on negative photophoresis and application to the atmosphere," Atm. Env. 42, 2682-2690 (2008). [CrossRef]
  62. H. Rohatschek, "Levitation of stratospheric and mesospheric aerosols by gravito-photophoresis," J. Aerosol Sci. 27, 467-475 (1996). [CrossRef]
  63. G. Wurm and O. Krauss, "Dust Eruptions by Photophoresis and Solid State Greenhouse Effects," Phys. Rev. Lett. 96, 134301 (2006). [CrossRef] [PubMed]
  64. O. Krauss, G. Wurm, O. Mousis, J.-M. Petit, J. Horner, and Y. Alibert, "The photophoretic sweeping of dust in transient protoplanetary disks," Astron. Astrophys. 462, 977 (2007). [CrossRef]
  65. O. Mousis, J.-M. Petit, G. Wurm, O. Krauss, Y. Alibert, and J. Horner, "Photophoresis as a source of hot minerals in comets," Astron. Astrophys. 466, L9-L12 (2007). [CrossRef]
  66. J. Steinbach, J. Blum, and M. Krause, "Development of an optical trap for microparticle clouds in dilute gases," Eur. Phys. J. E 15, 287-291 (2004). [CrossRef] [PubMed]
  67. E. G. Rawson and A. D. May, "Propulsion and angular stabilization of dust particles in a laser cavity," Appl. Phys. Lett. 8, 93 (1966). [CrossRef]
  68. S. Arnold and M. Lewittes, "Size dependence of the photophoretic force," J. Appl. Phys. 53, 5314 (1982). [CrossRef]
  69. A. B. Pluchino, "Photophoretic force on particles for low Knudsen number," Appl. Opt. 22, 103 (1983). [CrossRef] [PubMed]
  70. H. Rohatschek, "Photophoretic levitation of carbonaceous aerosols," J. Aerosol Sci. 20, 903-906 (1989). [CrossRef]
  71. J. Huisken and E. H. K. Stelzer, "Optical levitation of absorbing particles with a nominally Gaussian laser beam," Opt. Lett. 27, 1223 (2002). [CrossRef]
  72. M. H. Rosen and C. Orr, "The photophoretic force," J. Colloid Sci. 19, 50-60 (1964). [CrossRef]
  73. M. Pope, S. Arnold, and L. Rozenshtein, "Photophoretic spectroscopy," Chem. Phys. Lett. 62, 589-591 (1979). [CrossRef]
  74. S. Arnold and Y. Amani, "Broadband photophoretic spectroscopy," Opt. Lett. 5, 242-244 (1980). [CrossRef] [PubMed]
  75. A. B. Pluchino, "Radiometric levitation of spherical carbon aerosol particles using a Nd:YAG laser," Appl. Opt. 22, 1861 (1983). [CrossRef] [PubMed]
  76. H. Rohatschek, "Direction, magnitude and causes of photophoretic forces," J. Aerosol Sci. 16, 29-42 (1985). [CrossRef]
  77. H. Rohatschek, Acta phys.Austriaca 10, 267 (1956).
  78. C. N. Alexeyev, M. A. Yavorsky, and V. G. Shvedov, "Angular momentum flux of counter-propagating paraxial beams," J. Opt. Soc. Am. B 25, 643-646 (2008). [CrossRef]
  79. I. V. Basisty, M. S. Soskin, and M. V. Vasnetsov, "Optics of light beams with screw dislocations," Opt. Commun. 103, 422-428 (1993). [CrossRef]
  80. E. G. Gamaly and A. V. Rode, "Nanostructures Created by Lasers," in Encyclopedia of Nanoscience and Nanotechnology7, 783-809 (Am. Sc. Pub., 2004).
  81. B. Luther-Davies, V. Z. Kolev, M. J. Lederer, N. R. Madsen, A. V. Rode, J. Giesekus, K.-M. Du, and M. Duering, "Table-Top 50 W Laser System for Ultra-Fast Laser Ablation," Appl. Phys. A 79, 1051-1055 (2004). [CrossRef]
  82. A. V. Rode, S. T. Hyde, E. G. Gamaly, R. G. Elliman, D. R. McKenzie, and S. Bulcock, "Structural analysis of a carbon foam formed by high pulse-rate laser ablation," Appl. Phys. A 69, S755-S758 (1999). [CrossRef]
  83. A. V. Rode, E. G. Gamaly, and B. Luther-Davies, "Formation of cluster-assembled carbon nano-foam by highrepetition-rate laser ablation," Appl. Phys. A 70, 135-144 (2000). [CrossRef]
  84. A. V. Rode, R. G. Elliman, E. G. Gamaly, A. I. Veinger, A. G. Christy, S. T. Hyde, and B. Luther-Davies, "Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197-198, 644 (2002). [CrossRef]
  85. CRC Handbook of Chemistry and Physics, Ed. D. R. Lide, 88th ed. (CRC, Taylor & Francis Group, 2008).
  86. W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties," Science 268, 845-847 (1995). [CrossRef]
  87. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array," Nano Lett. 8, 446-451 (2008). [CrossRef] [PubMed]
  88. S. Beresnev, V. Chernyak, and G. Fomyagin, "Photophoresis of a spherical particle in rarefied gas," Phys. Fluids A 5, 2043-2052 (1993). [CrossRef]
  89. L. D. Reed, "Low Knudsen number photophoresis," J. Aerosol Sci. 8, 123-131 (1977). [CrossRef]
  90. J. C. Maxwell, "On Stresses in Rarified Gases Arising from Inequalities of Temperature," Phil Trans. R. Soc. London 170, 231-256 (1879). [CrossRef]
  91. J. Plewa, E. Tanner, D.M. Mueth, and D. G. Grier, "Processing carbon nanotubes with holographic optical tweezers," Opt. Express 12, 1978-1981 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1978. [CrossRef] [PubMed]
  92. C. Shi, Y. Zhang, C. Gu, L. Seballos, and J. Z. Zhang, "Manipulation and light-induced agglomeration of carbon nanotubes through optical trapping of attached silver nanoparticles," Nanotechnology 19, 215304 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (8599 KB)     
» Media 2: MOV (7595 KB)     
» Media 3: MOV (2392 KB)     
» Media 4: MOV (1527 KB)     
» Media 5: MOV (3524 KB)     
» Media 6: MOV (8290 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited